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AFIT-ENC-DS-14-S-02
Abstract

In decision making, an optimal point represents the settings for which a classification system
should be operated to achieve maximum performance. Clearly, these optimal points are of great
importance in classification theory. Not only is the selection of the optimal point of interest, but
quantifying the uncertainty in the optimal point and its performance is also important.

The Youden index is a metric currently employed for selection and performance quantification
of optimal points for classification system families. The Youden index quantifies the correct
classification rates of a classification system, and its confidence interval quantifies the uncertainty
in this measurement. This metric currently focuses on two or three classes, and only allows for
the utility of correct classifications and the cost of total misclassifications to be considered. An
alternative to this metric for three or more classes is a cost function which considers the sum of
incorrect classification rates. This new metric is preferable as it can include class prevalences and
costs associated with every classification. In multi-class settings this informs better decisions and
inferences on optimal points.

The work in this dissertation develops theory and methods for confidence intervals on a metric
based on misclassification rates, Bayes Cost, and where possible, the thresholds found for an optimal
point using Bayes Cost. Hypothesis tests for Bayes Cost are also developed to test a classification
systems performance or compare systems with an emphasis on classification systems involving three

or more classes. Performance of the newly proposed methods is demonstrated with simulation.
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STATISTICAL INFERENCE ON OPTIMAL POINTS TO

EVALUATE MULTI-STATE CLASSIFICATION SYSTEMS

I. Introduction

Decision making occurs daily in a vast range of fields, from health care to information
processing and military applications. Generally, these decisions may be based off of classification
systems which, for example, label an individual as diseased or not diseased or perhaps label an
object of interest as a target or non-target. Although such decisions could be made as simply as
through a quick visual inspection, for many decisions of critical importance it is of interest to
use statistics and best practices to develop and compare classification systems and quantify their
performance so as to choose the best classification method available to aid such decisions [68].

A simple classification rule may classify an item into one of two classes, such as Positive” and
”Negative”, or "Diseased” and "Not Diseased”. Although a lot of research has been conducted to
develop methods for the quantification of such classification systems, most applications in the real
world are more complicated and do not fit into simple binary classification rules. Despite examples
of classification systems in most applications, this research focuses on examples from a medical
diagnostic standpoint, as medical diagnostics carry great importance as well as the possibility for
large consequences with respect to misdiagnoses.

One recent example of a medical diagnostic decision involves the use of biomarkers to diagnose
subjects post kidney transplant as either being normal kidney function, normal kidney function with
proturina (a progression towards the diseased state), or chronic allofraft nephropathy (the diseased
state) [58]. Other examples abound such as that of HIV diagnosis. While screening for this disease
by using a specific biomarker, patients can be categorized into one of three categories: HIV-negative,
HIV-positive non-symptomatic, and HIV-positive with AIDS dementia complex [45]. Extending

the health concept to structures, we may be interested in the detection of the stage of structural



damage as being none, within a pre-specified safety range, or beyond the safe operating range. In
all of these examples the middle class is important as it represents a state in the progression of
some phenomenon (e.g. disease or damage). Thus, diagnosis of the middle class may allow for
intervention to prevent a subject or specimen from reaching the end state.

There are methods available to determine the performance of a classification system requiring
more than two outcomes. Many of these methods use extensions of receiver operating characteristic
(ROC) curve theory for comparing classification systems on their abilities to correctly classify
objects [16, 17, 20, 28, 29]. However, the number of possible outcomes is not the only concern
when choosing a classification system. The prevalence of the different classes as well as the costs
associated with making the correct (or incorrect) decision should also be considered [30, 42, 58, 65].
For example, in HIV diagnosis, different misclassifications may be considered more or less
significant. A person who is misdiagnosed as the non-diseased state when they are actually HIV-
positive may be considered much worse than the opposite error occurring (a non-diseased person
who is diagnosed as HIV-positive). In the first scenario, a person will not receive necessary
medical intervention and may now put others at risk since they are unaware of their HIV-positive
status. Clearly though, the latter misdiagnosis presents its own cost in that an individual may begin
treatment or otherwise suffer with a diagnosis that is incorrect.

In a two-class setting, assigning a cost to the different misclassifications is equivalent to
assigning an associated cost to the different correct classifications. However, this equivalence
does not universally exist for settings with three or more classes. Currently, little work has been
done to compare and quantify the performance of multi-class classification systems by using the
misclassifications. By using the misclassifications, different costs may be placed on all the possible
errors made by the classification system [58, 65].

The work of this dissertation improves classification system selection and performance
quantification for more complicated classification settings involving three or more classes with
unequal costs associated with the different misclassification errors. Specifically, precision of
estimates of classification system metrics and their optimal points through confidence intervals and

hypothesis tests are explored to aid decision makers.



II. Classification and Optimal Performance

2.1 Classification System Families

A classification system (A) is any process that assigns the elements from k partitions of an
event set, E = (g1, &, ..., &) to k distinct elements of a label set, L = ({1, I, ..., [y) . These partitions
may be referred to as classes. For example, a two-class label set could be {0,1} or {Diseased, Non
Diseased}. Data is collected on the elements, which are then processed into a feature or set of
features, F = (f1, f2, ..., fmw) - These features are then used to assign the different elements from E
to the respective labels, L, (A : E - F — L) . It is assumed that there is a parameter or vector of
parameters for the features, @ € © , that can be altered to change the outcome of the classification
system.! Thus, for every # € @ , there is a classification system (Ag) , and the set of classification
systems A = (Ay,0 € ®) is called a classification system family (CSF) [58]. It is also assumed
that there exists a truth label set, T =(¢1, 2, ..., #x) , such that all elements of the population would be
correctly labeled by this set.

A two-class classification system has four outcomes with respect to truth (see Table 2.1).
Defining one class as positive and the other class as negative, the possible outcomes from the
classification system are true positive, true negative, false positive, and false negative. True positive
occurs when the system correctly classifies a positive element with a “positive” label (the rate of
true positive is often called sensitivity). True negative occurs when the system correctly classifies a
negative element with a “negative” label (the rate of true negative is called specificity). These two
outcomes are correct classifications. The other two outcomes are misclassifications. A false positive
occurs when the system incorrectly classifies a negative element with a “positive” label. Likewise,
a false negative occurs when the system incorrectly classifies a positive element with a ’negative”
label. The results of a classification system are often arranged in a contingency table as seen in

Table 2.1 with the truth along the columns and the classification results down the rows.

"These parameters will generally be referred to as the thresholds for the classification system.



Table 2.1: Two-class contingency table where green cells correspond to correct classifications and

red cells correspond to misclassifications.

TRUTH

Positive Negative

“Positive” | True Positive | False Positive

False
Negative

CLASSIFICATION

“Negative” True Negative

An example classification system in a medical diagnostic setting may have elements in
partitions of the event set, E =(Non-Diseased, Diseased), and the label set, L. =("Non-Diseased”,
“Diseased”). After the collection of data such as a patient’s blood sample, the feature extracted
might be the value of a specific biomarker determined from the blood sample, F =(biomarker level,
pmol). Then a single threshold, 8 € ® , is determined so that whenever the observed biomarker
level is less than 6 , the patient is labeled as “Diseased”, and whenever the biomarker level is
greater than 6 , the patient is labeled as "Non-Diseased” (see Figure 2.1). For instance, when total
cholesterol (a biomarker feature) is greater than 240 (the threshold), a patient may be labeled with

“high cholesterol”.

In the two-class case, there are two correct classifications and two misclassifications. In the
k-class case there are k correct classifications and k> — k misclassifications. When there are more
than two classes, the correct and misclassifications can no longer be defined as true positive or false
negative. Therefore, these terms are generalized to correct classifications and misclassifications.
For simplicity of notation, the outcomes are labeled i | j , where j is the true label for an element
and i represents the classification system label for an element, i, j = 1,2,...,k . Then for all i = j,
the outcome is a correct classification and for all i # j, the outcome is a misclassification (see Table

2.2 fork = 3).



Threshold (8) value chosen
to label elements based
on biomarker value

«—

Distribution of feature
(biomarker) values for
diseased individuals

Distribution of feature
(biomarker) values for
non-diseased individuals

All el labeled as “Di: 47 All el labeled as “Non-Di: 47

Figure 2.1: Example of a classification system in a medical setting where elements are either
diseased or non-diseased. Hypothetical feature distributions for each class and a potential threshold

(green line) used to label the elements as either "Diseased” or ”"Non-Diseased” are shown.

Table 2.2: Three-class contingency table where green cells correspond to correct classifications,

i = j, and red cells correspond to misclassifications, i # j .

TRUTH

CLASS 1| CLASS 2 | CLASS 3

2| “CLASS 1| 11 112 13
g
2 “cLASS 2" | 21 212 2|3
12}
<
S| «cLASS 3”| 31 312 313

2.2 Receiver Operating Characteristic Curves

Receiver operating characteristic (ROC) curves are used to describe the performance of a CSF
when there are two classes (See Figure 2.2). The ROC curve plots the true positive rate versus the
false positive rate over all threshold values, # € @ . This curve allows for interpretation of the trade-
off between the true positive and false positive rates for varying thresholds. Thus, the ROC curve

represents the performance of the entire CSF for all € © .



The ROC curve plots classification rates, bounding the curve between O and 1 on both the
horizontal and vertical axes. The point on the ROC curve that represents perfect classification is
(0,1) (Figure 2.2). This point represent a perfect true positive rate (1) and a perfect false positive rate
(0). Therefore, CSFs whose ROC curve approach this point are desired and the single classification
system closest to this point is optimal. In a two-class setting, the probability of correctly classifying
due to random chance is 0.5. The line on the ROC plot that corresponds to chance classification is
called the chance line and intersects the points (0,0) and (1,1) (Figure 2.2) [19]. A CSF performing
worse than random chance would not be of interest, and therefore only CSFs whose ROC curves
lie above the chance line are usually considered. Finally, when there are more than two classes, the
ROC curve may be extended to a ROC surface by plotting the correct classification rates over all

6 € O in a k dimensional space, though only the 3-dimensional surface is visible graphically.

Sensitivity

T T T T T T
0.0 02 0.4 06 0.8 1.0

1-Specificity

Figure 2.2: Receiver Operating Characteristic Curve.

2.3 Optimal Points
The single classification system resulting in the best classification performance for the CSF is
said to occur at the optimal point (or points), corresponding to some 6 € © . For a two-class system,

the optimal point is usually found where the probability of a true positive and the probability of a true



negative are maximized (maximization of correct classification probabilities), or equivalently, where
the false positive and false negative probabilities are minimized (minimization of misclassification
probabilities). Therefore, the optimal point reflects a compromise between the correct classification
probabilities (or misclassification probabilities) [42]. The optimal point for a two-class CSF can
be found using the ROC curve. If the prevalence of classes and costs associated with classification
outcomes are considered equal for both classes, the optimal point occurs where the tangent line to
the ROC curve is parallel to the chance line (ie. the slope of the ROC curve is 1) [42]. This is
equivalent to finding the point on the ROC curve with the greatest vertical distance from the chance
line [54]. The threshold value(s) that produce this point are then chosen as the optimal threshold
values for this CSF.

Extensive work in the literature suggests that costs associated with a classification system’s
outcomes should be taken into account when evaluating the system and estimating optimal
thresholds [1, 30, 42, 58, 63—-65, 67]. In addition to the costs of the classification outcomes, the
prevalence of the different classes may be of importance when determining optimal settings for
a CSF [9, 42]. If the a priori prevalence of the diseased and non-diseased (or target and non-
target) classes as well as the a priori costs associated with the decision outcomes are taken into
consideration, the CSF may have a different optimal point (see Figure 2.3) [19, 58, 67]. When
prevalence and costs are considered, the optimal point occurs on the ROC curve where the slope is

equivalent to

2.1)

1 - —
Slope = pp % [CFP CTN]

pp CFN — CTP

[42]. The pp is the prevalence of the positive class, cry is the cost of a true negative, cgp is the cost
of a false positive, cyp is the cost of a true positive, and cgy is the cost of a false negative. Under
the assumption of equal prevalences and equal costs of misclassification (or correct classification),

this slope is equal to one as expected.

The optimal point for a k-class classification system will usually correspond to at least k — 1
threshold values. For example, in order to classify subjects into three categories (HIV negative
(NEG), HIV positive non-symptomatic (NAS), and HIV-positive with AIDS dementia complex

(ADQ)), two threshold values (8; < 6,) on a biomarker (NAA/Cr) may be used as a diagnostic
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Figure 2.3: Different optimal points (in red) for the same CSF, determined by Equation 2.1. The
orange line has a slope of one, representing equal class prevalence and costs associated with the
classifications. Both the green and blue lines assume a positive class prevalence of 1/3. The blue

line has a slope of 1/6 with cgy >> cpp . The green line has a slope of 2 with cpp = cgy . For each

line CTN =CTp = 1.

test [45]. If a subject’s NAA/Cr level is below 6, they are classified as ADC, if the subject’s NAA/Cr
level is between 6, and 6, they are classified as NAS, and finally if the subject’s NAA/Cr level is

greater than 6, they are classified as NEG [45] (see Figure 2.4).

2.4 Metrics for Optimal Points

2.4.1 The Youden Index.
The Youden index (J) was first introduced by W. J Youden in 1950 as an index for rating

diagnostic tests (or classification systems) with two classes [76]. The Youden index has been shown
to be a useful metric for measuring a classification system’s performance as a function of the correct

classification probabilities [23, 45, 46, 50, 56, 76]. In a two-class framework, this index is defined
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Figure 2.4: Three-class classifications for HIV example. Distributions of the NAA/Cr levels are
plotted for ADC (black), NAS (red), and NEG (blue) as well as potential threshold values, 6; and

6, , used to determine a subject’s classification.

as the sum of the system’s specificity (true negative rate) and sensitivity (true positive rate) minus
one. Using J, the optimal point of the classification system is found by choosing the threshold(s),
6 € O , that maximize J, thereby maximizing the correct classification probabilities. The thresholds
associated with the maximum J characterize the CSF at its optimal performance (with respect to
correct classification) and correspond to the optimal point on the ROC curve where the slope is

equal to one. Therefore, classification systems can be compared by calculating J:
J= rglzgc{sensitivityw) + specificity(8) — 1} 2.2)
(Sl

A classification system which performs worse than chance is generally not of interest, and therefore
it is assumed that both sensitivity and specificity are bounded between 0.5 and 1. For this reason,
J = sensitivity(0) + specificity(@) — 1 is bounded between 0 and 1 for systems performing better

than chance [76].



Costs associated with the different classifications as well as class prevalence may be of
importance in the determination of J. In fact, when not explicitly considering a cost structure
when using J, a cost and prevalence for each class is being assumed, that of equal weight for all
classes [55, 64]. Other costs may be considered by using a generalization to J which incorporates a
cost benefit ratio weighted by class prevalence in the two-class framework [30, 63]. The generalized

Youden index (GYI) for two classes is defined as

1—
GYI = max {sensitivity(a) + pr X
6cO

[CFP —crN
pp

CFN — CTP

X specificity(d) — G} (2.3)

where G is a constant determined by the prevalence of the positive class and the costs associated
with the different decisions [30, 40, 63]. Notice that the prevalence/cost multiplier is the same as in
Equation 2.1

When there are more than two classes, J is extended as the sum of the k correct classification
probabilities [45, 46]. Under this framework, the correct classification probabilities can no longer be
distinguished by sensitivity and specificity, so instead, the k correct classification probabilities are
labeled as P;—; (@) , where j = 1, ..., k denotes the true class and i = 1, ..., k denotes the classification

system’s labeled outcome. Then J is redefined as

k
J = max Z
[/EC]

=1
i=

1
J

k
Py i(6) (2.4)
4

J

J is generalized by adding a multiplier (prevalence and/or utility) to each correct classification
probability for classification systems with three or more classes [45, 46]. The limitation with
such an extension is that only costs of the total misclassification and (utility of the) total correct
classification outcomes within each class are used. This ignores possible different costs on class
specific misclassifications. For example, misclassifying stage 3 cancer as stage 2 may have a
different cost than classifying stage 3 as stage 1.

Extensive work has derived formulas for determining J and the optimal threshold(s) for CSFs,
under various distributional assumptions of the feature used for classification, and focused on the
two-class framework [23, 33, 49, 54, 56]. An overview of these results are given in the following

sections, and are separated into parametric and nonparametric methods.
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2.4.1.1 Parametric Methods.

Assume two classes and a single feature used for classification where the feature is
independently and normally distributed for each class, where X is the first class and Y is the second
class, denote X; ~ N(,ul,(f%) forj=1,..,n,Y ~ N(,uz,(r%) fori =1, ..., ny , and without loss of
generality (WLOG) let u; < u, (see Figure 2.1). Recall that the probability distribution function

(pdf) for the normal distribution is

1 —(w=p)?
fwlu,o)= e 2072 —o<W<o0, —co<u<oo, o>0 (2.5)
\2no
Then the Youden index may be written as
—0* g —
J:@(“Z—)mp(—“‘)—l (2.6)
() 01

where @ is the normal cumulative distribution function (CDF) [56]. Here, the maximum is excluded
because the optimal threshold 6* is used. The closed form solution for the optimal threshold, 6* € ©,

which maximizes Equation 2.6 is given by

u1(B* = 1) —a+bJa* + 20> - D)o} In(b)

? B -1

2.7)

where a = yp — pyp and b = % [56]. If oy = o , this result does not exist, but for this case the

optimal point is the midpoint between the distribution means given by [56]:

+
0" = H1+ {2 (2.8)
2
The GYI may also be rewritten using the normal CDF:
-0 0" —
GYI:(D(“2 )+R><d>( “1)—(; 2.9)
(o) (O8]
where
1 - -
R= Pp 5 [CFP CTN] (2.10)
Pp CFN —CTP

Again, the maximization is excluded because this equation is being evaluated at the optimal

threshold. Accounting for fixed class prevalences and costs associated with the classification

2

outcomes, the optimal threshold when o-% =03 is
2 2_ .2
. _ 207 In(R) — puy — 15

2(u2 = p1)

2.11)
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[30]. When o-% * a’% the optimal threshold is

p* - 1) —a+b \/a2 +2(b - o2 In(R x b)

¢ > -1

(2.12)

where a = pup — py and b = g—f [63].
When there are three classes, there is an additional class, Z, where Z, ~ N(/,l3,0'§) for
m = 1,..,n3 . J is then defined as the sum of the three correct classification probabilities and

can be expressed using the normal CDF as

o — o5 — o — 05 —
J:q)(l_’ul)_,_q)( 2 ﬂ2)_®(1_112)_q)(2_ﬂ3)+1 (2.13)
o o) 02 o3

where 6] < 6] are the optimal thresholds found to maximize J [45]. The solutions for these optimal
thresholds can be found with Equation 2.7 where the solution for 67 is found with a = p — u; and
b = g—f . The solution for @ is found similarly with @ = 3 - and b = 5—2 [36]. Although the
GYT has not been extended for three classes, in [45] the three-class J is generalized with weights on
each correct classification probability. Therefore, weights could be added to Equation 2.13 and the
optimal thresholds (6] < 63) would be found numerically.

Finally, for all forms of J and GY], if the classification feature is distributed log-normally, the
point estimate of the threshold is determined using log-transformed data. A similar development
is presented in [56] for J with two classes and a gamma distributed feature. However, for features
distributed within the Box-Cox family, transformations to normality may be used and the formulas
assuming normality applied [30, 45].

2.4.1.2 Nonparametric Methods.
For any number of classes, if no distributional assumptions about the feature used for

classification are made, J can be defined using the empirical CDF. The empirical CDF, F,(x) ,

of a random sample of size n is defined as

Fo(x) = % Z I(X; < x) (2.14)
i=1

where [ is the indicator function and is equal to 1 if the relation is true, and O otherwise [32]. For

example, in a three-class scenario (X < Y < Z), J may be defined as

J=F(@)+G0;) - GO - HG) + 1 (2.15)
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where F(0) = -3 10 < 0), GO) = £ 32, 1(v; < 0), HO) = ;- % Iz < ) , and
6} and ¢ are the thresholds found to maximize Equation 2.15 [45]. Methods that have been used
to determine the optimal thresholds include a smoothing kernel method on the empirical CDFs,
choosing the observations where the maximum occurs, or by random walks [45, 63].

All forms of J presented may be extended for the k-class J, where again, weights may be
placed on the correct classification probabilities to incorporate the importance of the different correct
decisions in finding the optimal point [46]. Other work on J includes consideration of special
cases such as pooled samples, corrections for measurement error, and methods for when the feature
distribution has a mass at zero [49, 54, 55].

2.4.2 Bayes Cost.

The optimal threshold found by maximizing the correct classification probabilities (via
J) is equivalent to that found by minimizing the misclassification probabilities in a two-class
framework [6, 50]. When there are more than two classes and unequal costs associated with
the misclassifications within each class, the equivalence between optimal thresholds found by
maximizing correct classification probabilities and minimizing misclassification probabilities is not
universally true. This is because it is no longer feasible to assign a simple cost benefit ratio between
the benefit of making a correct decision and the costs of making an incorrect decision [58, 65].
Therefore, finding the optimal settings can be more complex when a classification system has more
than two classes. In order to assign differing costs or benefits to the potential outcomes of a k-class
classification system, a metric that considers all differing misclassification probabilities should be
considered instead of extensions of J.

A k-class classification system results in a total of k> correct classification and misclassification
probabilities; however, J only uses k pieces of information (k correct classification probabilities).
Therefore, by using J, k*> — k pieces of information about the classification system may be lost,
namely information about the class-specific misclassifications. A metric developed on the k> — k
error probabilities will lose no information about the system [58] (see Theorem 1).

For this reason, the development of a metric associated with the misclassification probabilities

is of interest. Bayes Cost (BC) is a metric presented in [65] that minimizes misclassification
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probabilities for three or more classes. This metric allows for misclassification probabilities to

be weighted by the cost and class prevalence associated with each misclassification outcome.

kK k

Bayes Cost = rgleicf)l Zl Zl cijpjPij(0) (2.16)
l.: . J=
1#]

where ¢;; is the fixed cost associated with misclassifying class j as class i and p; is the fixed
prevalence for the j™ class. Therefore, BC allows for the use of any cost/prevalence structure on

both the correct and misclassification probabilities.

Theorem 1. Using Bayes Cost to determine the optimal thresholds of a multi-state classification
system allows for the use of any costjprevalence structure on any of the correct or misclassification

probabilities, therefore not losing any information about the classification system.

Proof. Let the prevalence of the class be denoted p; and the cost of a misclassification be m;x;
or benefit of a correct classification be b;-j;, where the true class is denoted j = 1,2,...,k and

classification outcomes are denoted i = 1,2, ..., k. The cost function to minimize would be

Cost = min
0c®

M-

1l
—_

PjmizjijPizpj(6) + pjbi=jjPi=j;(6) .17

1

1

k
=1 j

kK k
Jj =1 j=1

Note, since the classification outcomes in each class are mutually exclusive and the sample size of
each class (n;j) is fixed:

k
D Pi6) = 1, for each j=1,2,...k (2.18)
i=1
which implies

k
Picjij(®) = 1= > Piz (), foreach j = 1,2, ..k (2.19)
i=1
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Substituting Equation 2.19 in Equation 2.17 gives

k k
Cost = min@E@ Z“l Zl P jMmizjj l;f:jlj(g)"' Z Z Pj i= j|j i= ]I](a)]
i=1 j= i=1 ]—
. k k
= minge@® Zl _Z] P jMizjij l¢j|j(0) + Z Z pj i= j|j( Pi#jlj(a))
=1 = l— ,]—
. k k
= mingee Zl le Mixj|j zijl](a) + Zl Zl( i=jlj — pjbi:jljpiijlj(a))
i=1 j= i /
k k
= Mminge 21 '21 pjm#ﬂjP#ﬂj(O) - Z Z b;- Jilj l¢]|J(0) + COl’lStLlnt:|
i=1 j= i=1 j=1
. k k
= mingee Z Z p.,-m#ﬂjP,-#.,-U(H) - pjbi=j|jP,'¢j|j(0) + constant
i=1 j=1 (2.20)
k k
= Mminge 21 '21 Dj (mi;tjlei;tjlj(O) - bi:jIjPi;tjlj(e)) + constant
i=1 j=
. k k
= minge@ Z] Zl Dj (m#ﬂj - bi:j|j) Pi;tjlj(o) + constant
i=1 j=
. k k
= MiNge@ IZ Zl ijinPin(o) + constant, where Cilj = Mixj|j — bi:jlj
L i=1,i#j j=
= Bayes Cost + constant
= ozmt = H*BC

This demonstrates that the optimal thresholds found by minimizing Bayes Cost are equivalent to
those found by minimizing a function which uses all classification outcome probabilities from the

classification system, allowing for any cost/benefit and prevalence structures to be considered. O

Assume a three-class classification system with a single feature used for classification that is
independently and normally distributed for each class, where p; < p» < 3 . Under this framework,
BC can be expressed with the standard normal CDF and the optimal thresholds that distinguish

between the classes and minimize BC, 01‘ < 0; , as

05 — 0] — u1 — 6
BC;3 = p1 X((D( 20_1 )_(D( 10_1 ))+C3|1p1 X(CD( - 2))
0 — 2 U2 — 65
+C1|2p2X(CI)( 10_2 ))+C3|2p2X(CD( p 2))
0] — 3 05 — 3 07 — 3
+Cl|3p3X((D( 10_3 ))+C2|3p3X(CD( 20_3 )—(D( o (221)

The minimization is not expressed in Equation 2.21 as this is achieved by using the optimal

thresholds. The optimal thresholds must be found numerically when all ¢;;p; are not equal, for

i # j. When all ¢;;p; are equal, for i # j, Equation 2.7 may be used to find the optimal threshold
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between each set of normal distributions. Equation 2.21 may be extended for any k classes with a
single feature used for classification that is independently and normally distributed for each class,
and would require k — 1 optimal thresholds.

When there are two classes, the optimal threshold found by minimizing BC is equivalent to that
found by maximizing the GYI, Equations 2.11 or 2.12 (assuming the same costs and prevalences
used to find the optimal point). A proof of this equivalence is given in Section 2.5.2. Also, if all
cijjp;j are equal, for i # j, the optimal threshold(s) found with BC would be equivalent to those
found by maximizing J.

In a nonparametric setting, BC can be estimated using the empirical distribution function.
Letting @ = (01 < 6, < ... < 6;) and F; be the empirical CDF for the j’h class with F;_; < F; , for

all k classes, BC is defined as

k

k
BC = min Z > cuip[Fi6) - Fi(61)] (2.22)

6c® oy
1#]
where Fj(6p) = 0 and F;(6,) = 1 [65]. The optimal thresholds are then found to be those which

minimize Equation 2.22.

2.5 Confidence on Optimal Point Metrics

It is critical to characterize the uncertainty in an optimal point, as such estimates are typically
constructed from data. This is most commonly accomplished by creating confidence intervals
(ClIs) around the metric used to characterize the optimal point (Youden index, Bayes Cost, etc)
as well as creating confidence interval(s) around the threshold(s) which correspond to the optimal
point [30, 33, 49, 56, 76].

CIs are a statistical inference method that provide a range of values (usually an interval) for
which there is a specified level of confidence that the true parameter lies within the interval. CIs
may be constructed as either one or two sided (one sided being of the form where there is either
a lower or upper bound, but not both). This work focuses on constructing two sided confidence
intervals. If X = (Xi,...,X,) is a random sample, then L(X) and U (X) form a confidence
interval with confidence coefficient 1 — @ for some function of the parameter 6 , 7(6) , such that

PILX) <10 < UX)] = 1-a/[l2, p. 417],[44, p.377]. Because it is known that the upper
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and lower bounds of the CI are functions of the observed data, the notation for the bounds may be
simplified by writing L (X) as 7(8). and U (X) as 7(6)y .

Not all CIs perform equally well. An interval’s coverage probability and length are metrics
of a CI's performance. If a CI with a confidence coefficient of 1 — @ is constructed 100 times, it
is expected that (1 — @)100% of the intervals actually contain the true parameter of interest. This
may not always be the case, and the percent of constructed Cls that contain the true parameter is the
coverage probability of the CI. The coverage probability should be at least (1 — @)100% for a well
performing CI. CIs with coverage probability greater than (1 —a)100% are considered conservative.

For all CIs that meet the desired coverage probability, it is then of interest to find the interval
with the shortest length. The length of an interval is defined as 7(8)y — 7(6)r. . A shorter length CI
which meets the desired coverage probability provides a more precise (and therefore, arguably, a
more useful) estimate of the parameter. Another metric of CI performance is its symmetry, which
may be used to judge whether or not the true parameter of interest lies in the center of the interval,
or if the interval is skewed to one side. Mean squared error and bias of the parameter estimate may
impact CI performance and are therefore also sometimes considered, though these are not properties
of the interval itself.

2.5.1 Confidence on the Youden Index and Optimal Thresholds.

Several methods exist in the literature for constructing Cls around J and the optimal
threshold(s), mainly in a two-class setting. In addition to these methods, bootstrap methods are
also applicable, as bootstrap CIs are a general and flexible method that may be used under any
distributional assumptions of the features and classification system structure. First, parametric CI
methods are presented and following these methods, the nonparametric CI methods available for J
are presented.

A delta method approximation, which uses first order Taylor series expansions to determine
the variance of J and the optimal threshold(s), has been implemented to create CIs for J and the
resulting optimal threshold(s) for a classification system with two or three classes with a single

feature that is independently and normally distributed for each class [36, 56, 63, 64]. The delta
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method (1 — @)100% CI around J is

T+ 202+ Var(T) (2.23)

where J is estimated using Equation 2.6 for two classes or Equation 2.13 for three classes and

Var (7 ) is approximated with the delta method as:

k
Var (f) ~ Z
j=1

The covariance term from the delta method approximation is zero, due to the assumption of

IV . (eI
(6_;1]) Var(uj)+(%j) Var(aj)} (2.24)

independence between the classes’ feature distributions.
Assuming two classes and a normally distributed feature, X; ~ N(u 1,0'%) for j =1,...n,

Y, ~ N(,uz,O'%) fori=1,..,ny,and u; < up , Var (T) in Equation 2.24 is estimated by:

— S% —1+ab(rad)™'1? 2
Var(7) = | 2| |6@) + 0G) - @) | ——

-1
Si
+(—1)(n—1)
1

¥ m X(Z’d?z + ((—’b\z — D)(rad)'’?

B+ (—1)&‘3(md)—1/2)]2

¢@)+(¢@)—¢@))( =
b* -1

= (boGD-9@)
Z2¢@) + (/];2_1)2(5%)1/2

+HSDH(B? ~ V)(rad)y™ (n(B?) + 1 - b72)))

Z6G) + (b¢G1)-9@))

_1 B2

* 2(n; = 1) X(Zﬁ’[;2 + ((—7;2 — D(rad)'’? (2.25)

+SH(B? - D(rad)™ 2 (In(®?) + b* — 1))

—F  —~ Y o~ o — 2 e
Whereﬁz’i]g_z,zlz(i/s_yz,a:y—x,b:g—%,rad:a2+(l;2—I)S%ln(lp),andgbrepresents
2 1

the standard normal pdf [5

(@)

]. A similar formulation of the approximation of Var (T ) is used for the

delta method CI for the three-class J.

The (1 — @)100% CI(s) for the optimal threshold(s) (two or three classes with a normally

0" + 202 \| Var(@) (2.26)

distributed feature) is given by
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where 6* may be found with Equation 2.7 (for either optimal threshold by considering the
appropriate adjacent classes) [36, 56]. Using the delta method, the variance of 6 is approximated
with

00" \? 00
(')/11) Var(uy) + (80‘1

>k >k >k

2 2
) Var@2)+(60 ) Var(o,) 2.27)

2
) Var(o) + (89 P

Var(é; ) = ( s

The partial derivatives required for this approximation are

(ff; ) £ abl(arzail); 0 (2.28)
) -
(;ﬁl) :(bz__zcld;zz — [b(lé;_l)l()rffm - (”bb(zm_d)l_m (In(@?) + 5 - 1)] (2.30)
B

where a, b, and rad are defined as they were for Equation 2.25 [36, 56]. When there are three classes,
the variance and partial derivatives of the second optimal threshold are estimated with Equation 2.27
and Equations 2.28 to 2.31 by replacing the first class with the second and the second class with
third [36, 56].

Under the framework of the two-class GYI, the delta method has been used for developing a
CI around the optimal threshold for a classification system which utilizes a single normally or log-
normally distributed feature (but not for the GYI itself) [30]. For a CI around the optimal threshold
found with the GY1, the delta method Cl is similarly developed as that for J, although the expression

allows for the cost/benefit weighting factor. When the variances are equal

2 ) 2 2 2
Var(é;)z(@) Var(’&z)+(1/2+ g LZ(R)) Var(ﬁl)+(1/2— g :;(R)) Var(@) (2.32)

This approximation may be used in Equation 2.26 to construct the CI around the optimal
threshold [30]. This CI has also been generalized for when the variances are not equal [64]. Further,
the delta method has been used to derive CIs for J and the optimal threshold when the classification
system utilizes a single feature to distinguish between two classes when the distribution of the

feature for each class is an independent gamma [56].
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In [43], the delta method CIs for the two-class J and the optimal threshold are modified by
utilizing a second order Taylor series expansion as opposed to the first order expansion used in
Equations 2.24 and 2.27. Although the extension to the delta method is presented, the performance
of the extended version is not compared to the simpler method and therefore the more complicated
derivation has not been justified. All delta method CIs are only appropriate for large sample sizes if
the desired coverage probability is to be achieved.

Generalized CIs (GCIs) are developed in [33] for J and the optimal threshold under the
assumption of a single feature used for the classification between two classes, where the feature
is independently and normally distributed for each class. These exact ClIs outperform the delta
method CIs for scenarios considered in the simulation presented in [33] because they meet the
desired coverage (for small n; > 10) while maintaining a CI length that is less than the delta method
CI length. This generalized method for classes with a normally distributed feature is also used for
constructing a CI on the difference in paired Youden indices in the two-class framework, allowing
for the comparison of two classification systems’ performances in a paired data structure [80].

If no assumptions are made about the distribution of the feature used for classification, a non-
parametric CI around J and the optimal threshold may be used. In [79], a CI for the two-class J is
developed with the Agrestti-Coull confidence interval for a binomial proportion (see [2]), where J

is estimated with

- SE X <6+ 27,002 ) S A< 0)+ 27,002

(2.33)
m+ 2 n/2 CRE T

A nonparametric asymptotic normal (AN) bootstrap is utilized to determine the CI bounds for
J estimated in Equation 2.33 (this method does not provide a CI for the optimal threshold).
Under various distributional assumptions, this method approaches the desired coverage probability
for n; > 50. In [43], an empirical likelihood method which utilizes bootstraps is used for
constructing a nonparametric CI around J and the optimal threshold in the two-class framework.
This nonparametric method performs well with respect to coverage for samples of at least 30 in
each class.

Currently, a confidence interval around the GYI has not been presented, except for a bootstrap

CI [40].
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2.5.2 Confidence on Bayes Cost and Optimal Thresholds.

The two-class J may be written as
J = n(}%x [P]|1(0) + P2|2(0) - 1] (234)

where Pqj1(8) and Pyp(0) are the correct classification probabilities for a threshold(s), @ € ® . The

two-class BC (with all ¢;jp; assumed to be one, for i # j) may be written
BC = Iglei(f)l [P21(6) + P1)2(0)] (2.35)

where P5|1(0) and P12(0) are the misclassification probabilities for a @ € © . For greater utility, BC is

defined with prevalences on the two classes and different costs on misclassification errors [58, 65]:
BC = min [c1p1P21 () + c1pp2P12(6)] (2.36)

where ¢;; is the fixed cost associated with misclassifying class j as class i and p; is the fixed
prevalence for the j™ class.

From these definitions it is shown that for a two-class classification system, the optimal
threshold found by minimizing BC is equivalent to the optimal threshold found by maximizing
J (when all ¢;;p; are equal, for i # j, Theorem 2) or by maximizing the GYI (Theorem 3) when the

costs are defined as
GYI _ GYI BC

‘I " Cip 2.37)
GYI _ GYI ~ _BC :
Sn TS
where cl.cl;jy I and cﬁjc are the costs associated with the GYI and BC, respectively. Then, a CI around

the optimal threshold found by minimizing BC would be equivalent to the CIs developed for the
optimal threshold found with J or the GYI (assuming the same statistical method for constructing

the CI is used).

Theorem 2. The optimal threshold, 6y , found by minimizing Bayes Cost when all c;jp; are
assumed equal to one, for i # j, is equivalent to the optimal threshold found by maximizing the

Youden index, 8, = 0. , for a two-class classification system family.

Proof. Let 6. and @) represent the optimal thresholds found by minimizing Bayes Cost and

maximizing the Youden index, respectively. Also, let P;;(0) represent the probability of classifying
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class j as class i . Then, there exits HEC > BC = mingep [P21(0) + P112(0)] and there exists

0, > J = maxgeg [P1)1(0) + P2p(0) — 1]. Now, consider

Orc arg mingee [P2)1(0) + P112(0)]

= argmaxgee [1 — P21(0) — P1p(0)]

= argmaxgee [1 — (1 = P1j1(0)) — (1 — P2p(0))]

= argmaxgeo [1 — 1 + Pyi(6) — 1 + Pap(0)] (2.38)
= argmaxgee [P1)1(0) + P2p(6) — 1]

= 0

N
= Opc =0

Theorem 3. The optimal threshold, 0y , found by minimizing Bayes Cost is equivalent to the
optimal threshold found by maximizing the generalized Youden index, 0, = 6y , for a two-class

. . GYI _ (GYIy 1((GYT _ (GYIy
classification system when the costs are defined where [(c1|2 p )/ (c2|1 o ] [ ”2 o1 ] .

Proof. Let 6. and 0, represent the optimal thresholds found by minimizing BC and maximizing
the GYI, respectively. Also, let c;; be the fixed cost associated with classifying class j as class i ,
p; be the fixed prevalence for the j™ class, and P i(0) be the probability of classifying class j as

, then there exits

class i for a given 8 € O . Assume [(CGYI YNy )(cGYT — OYTy ] [ ”2 cBC

12~ %p 2/1 111 1
(GYI_GYI
S ~Cip
GYI GYI
i~

0*

p x specificity(@) — 1| and there exists

s 1-p,
> GYI = maxgeo [sensmwty(ﬂ) + p—’ X
4
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0 C 3> BC = mingee [plcglsz“(H) + p2C1|2P1|2(0)] Then

GYI_ .GYI
07y, = argmaxgep |sensitivity(6) + f 2% ?G:Ty, ;G:?Y, x specificity(@) — 1]
(GYI_GYI

= argmaxge[ Py (8) + L x | 5t | X Pa(6) - G

GYII‘I GYZI‘l
=  arg maxgee P1|1(0) + ﬁ—? TG:?,—%IYI X P2|2(0) G}

GYI_ .GYI

= argmaxgeo |(1 - P21(6)) + £ X Tc:?n ;6?11 X (1- P1|2(0))]

“n

cBC
= argmaxgep | —P1(6) + 22 X 2'% X (1= P12(6))
2
I BIC cBC
= arg maxgee —P2|1(0) + l’;—? }3'2 l‘z—? X ”2 X P1|2(0)} (2.39)

= argmaxgee 1# (—plcng2|1(0) - pzc1|2 P1|2(9) + pgcllz)]

= arg maxgep [m ( plc2|1 P2|1(0) pzcl|2 P1|2(0) + constam‘)]
= argmaxgce [—p102|1 Py1(0) - pzcm P1|2(9)]

= argmingee [Plcgﬁpzu(é’) + pach 2 SP 1|2(9)]

= O

= O

*
GYI — OBC

O

A delta method CI for the optimal threshold found by minimizing BC is presented in [63] for
a classification system with two classes and a single feature that is independently and normally
distributed for each class. This CI is equivalent to the delta method CI for the optimal threshold
found with the GYI (Section 2.5.1) when costs are defined with Equation 2.37.

CIs on the optimal thresholds found by minimizing BC in a multi-state setting are derived
using the delta method and numerical approximations in [65]. Notably, the CI for BC was not
derived. However, in a three-class scenario, Cls on the two threshold values may not necessarily
correspond to confidence around the optimal point. A specific set of thresholds {6;,6;} from the
CIs around each individual threshold may be a hidden extrapolation outside the optimal threshold
region. Therefore, Cls around the optimal thresholds may not be the ideal method for quantifying
uncertainty in the optimal point, especially in a multi-state setting with more than one threshold. To
quantify uncertainty in the optimal point, CIs around the optimal point metric (J or BC) should be

considered.
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To further motivate a CI around the optimal point metric as opposed to the optimal thresholds
only, consider the following example. Assume a random draw from a classification system with
three classes (assume samples of size 50 are taken from each class), where X; ~ N(-3,1),
X> ~ N(0,1), and X3 ~ N(3,1). The delta method CIs around the two optimal thresholds found to
distinguish between the classes may be 6 € [—1.95,—-1.49] and 6, € [1.45,2.12] using the method
in [65]. Given the estimated normal distributions from the sample, this range of thresholds would
correspond to BC values from 0.207 to 0.226. However, for the same sample, the delta method
CI around BC (developed in Section 3.2) is BC € [0.114,0.301] and the true value of BC from
the assumed underlying distributions is 0.27. Therefore, values within the thresholds’ ClIs do not
necessarily reflect all the uncertainty in the optimal performance of the system (measured by BC),
and in this example, overestimates the system’s performance.

Notably, the CIs around the thresholds are of use once a classification system has been chosen
for implementation. Before a classification system is chosen, however, it may be of interest to
compare competing systems based on their optimal performance in order to chose the system with
the most powerful classification ability. By constructing a CI around each classification system’s BC
value, performance at the optimal settings can be compared between systems. Currently, methods

for CIs around BC do not exist.

2.6 Hypothesis Tests for Optimal Point Metrics

A hypothesis “is a statement about a population parameter” [12, p. 373]. In testing a hypothesis
there are two hypotheses, the null hypothesis (Hy, 6 € ®) and the alternate hypothesis (H;, 6 € ®g).
Both of these hypotheses make statements about the parameter space of interest, such that combined,
they cover the entire parameter space [34, p.60]. Of interest for this work would be hypotheses about
metrics of a classification system, such as J or BC. Such a hypothesis might be constructed to test
if a classification system meets some desired level of performance, for instance, to determine if a
classification system performs better than chance.

There are two types of errors which may occur when testing a hypothesis. A Type I error occurs
if the null hypothesis is rejected, when it was actually true (ie. 8 € ®g). A Type II error occurs when

the null hypothesis is not rejected, when it is not true (ie. 6 € ®g). Clearly, it is ideal to minimize the
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probability of committing either of the two errors. However, there is a trade-off between both errors.
Therefore, a level of significance of the test (o € [0, 1]) is usually set such that the probability of
a Type I error is less than or equal to the level of significance for all 6 € ® [34, p.61]. Then for
all tests with the desired level of significance, the test which minimizes the probability of a Type II
error would be best.

Although tests of hypotheses on J or BC would be useful when selecting a classification system,

such tests have not been developed.

2.7 Distributions for the Youden Index and Bayes Cost Inference

Making no distributional assumptions about a classification system, the classification outcomes
with respect to truth can be modeled as binomial or multinomial random variables, fork = 2 or k > 3
classes, respectively. Therefore, background information on these distributions is presented in this
section.

2.7.1 Binomial Distribution.

The classification outcomes from a two-class classification system, for a fixed 8 € ® , are
arranged in a contingency table in Table 2.3, where X ; denotes the number of observations classified
into class i with truth class j. The sample drawn from each class is fixed; consequently, the
knowledge of the total correct or incorrect observations explicitly defines the other. For that reason,
the correct or incorrect classification observations from each class are modeled as binomial(n, p; ),
where p;; is the true population probability for the outcome of interest and #; is the fixed number
sampled from the j” class, j = 1,2. The binomial probability mass function (pmf) is given,
generally, by

fx(x|n,p)=PX =xn,p)= (n)px(l -p)* x=0,1,.n, 0<p<1 (2.40)
X

X
o

The maximum likelihood estimate (MLE) of p, is p =

2.7.1.1 Confidence Interval for Binomial Proportions.
Clopper and Pearson derived an exact CI for a binomial probability using fiducial limits in
1934 [13]. The Clopper-Pearson (1 — @)100% CI for p from an observed statistic, y = number of

successes, from a binomial distribution with fy(y | p) defined as the binomial pmf, is found by
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Table 2.3: Contingency table for a two-class classification system. Column labels represent truth

and row labels represent the label given by the classification system.

Class 1 | Class 2

Test=1 Xm X1|2

Test =2 qu X2|2

solving the following two equations for the lower and upper bound (py and py, respectively)

ZfY(k | pL) = ZfY(k | pL) = % (2.41)
k=y k>y

. 04
Z fr(k| py) = ZfY(k | pv) = ) (2.42)
k=0 k<y

The sample space is y € (0, ...,n). When y = 0 or y = n is observed, a solution cannot be found for
one of the two above equations (2.41 and 2.42) and the lower bound is O or the upper bound is 1,
respectively [3, p.18]. This last condition is necessary because these extreme values of Y result in
either summation for any p to be 1, due to the property of a pmf where
D10 =1 (2.43)
yey
for any 6. The closed form solution of the Clopper-Pearson interval for a binomial probability is

-1 -1

n—x+1 n—x
1+ <p<|l+ (2.44)
X2 2(n-x+1),1-/2 (x + DF2+ D,2(1-x),0/2
where x is the observed number of successes (x = 1,2,...,n — 1) and this interval has a coverage

probability of at least (1 — @)100% for all p [2].

2.7.2 Multinomial Distribution.

A k X k contingency table is used for arranging the outcomes of a k-class classification system
for a fixed 6 € © (Table 2.4). The multivariate random variable X; = (Xy;, Xy}, ..., Xy ;) represents
the k outcomes from a single class sampled n; times and is distributed multinomial(n;,p; =

ith

(p11j> P21j> ---» Pk|j)) Where p;; represents the true probability for the ;j” class to be classified as the

th k _ k _ - .
i" class, i Xy; = nj,and ), py; = 1. Also, each observation can only be classified as one
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Table 2.4: Contingency table for a k-class classification system. Columns represent truth and rows

represent the label given by the classification system.

Class 1 | Class2 | Class 3 | .... | Class k
Test=1 X Xip X3 X1k
Test=2 X2|1 X2|2 X2|3 X2|k
Test=3 X3)1 X3p X33 X3k
Test =k Xk|1 Xk|2 Xk|3 Xk|k

outcome, resulting in E[x;; X x;;,i # i’] = 0. The multinomial pmf is

k
n! .
A Inp) = P(Xi = x1,X = x0,.. X = x| n,p) = | | P where xi € (0....m)  (2.45)
. 1-

i=1

Each X; considered individually (collapsing among the other i — 1 X’s within class j) is
distributed binomial(#n, p;). However, when considering all classification outcomes simultaneously,
the multinomial distribution is used as it allows for consideration of multiple classification outcomes
at once, and provides for the covariance structure between outcomes within a class. The MLEs of

the multinomial parameters are

X1 X2 Xk

/p\: (5\175\27 "‘7ﬁ7€) = (_7 _7 ey _) (2.46)
n n n

where each x; is the i’ observed outcome and  is the total sample size [3, p.21].
2.7.2.1 Confidence Intervals for Multinomial Proportions.

In this section, methods available for simultaneous Cls for multinomial probabilities and linear
combinations of multinomial probabilities are presented. In 1963, Gold introduced a CI for the
linear combination of multinomial probabilities. Letting I = (/1,.. ., [;) denote the linear multipliers
for each probability:

1
2 1

(1)2 (2.47)

n

k k k k 2
S e S e ) [z i
i=1 i=1 i=1 i=1
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[26][53, p.217]. Gold also extended this for all linear combinations of several populations of

multinomial probabilities, p;; , as
— 1
Z lijpij € Z L5 = Wie1y.a) S0 (2.48)
ij ij
where j denotes the r populations (j = 1,...,r), i denotes the c categories (i = 1,...,c) and
roq [ & k 2
2 2 — —
5] = Z p Zl[jpij - [Z lijpij]
j=1""]i=1 i=1

[53, p. 219]. When the linear combinations considered are contrasts, the degrees of freedom are

(2.49)

reduced from r(k — 1) to (r — 1)(k — 1), resulting in shorter intervals [27].

In 1964, Queensberry and Hurst found the solutions to the following quadratic equations

— (1 —pi) .
(pl_pl)zz)(i_]’apl pl 1= 1""’k (250)
n

produced simultaneous Cls around multinomial probabilities [51][53, p.217].

Goodman (1965) used Bonferroni intervals where

Pi € Di £ Zaj2k (2.51)

- 4l

pil =pi)|?
n

[53, p.216][71]. This is equivalent to a Wald CI with a Bonferroni correction for multiple

comparisons, but does not take into account the covariance between the multinomial parameters.

Fitzpatrick and Scott (1987) also introduced simultaneous Cls for multinomial parameters

in [22] where,
i€ ﬁ 4 a2
1 1 — 2 '\/ﬁ

All of these previous methods were developed with large sample theory.

(2.52)

Finally, in 1995 Sison and Glaz determined that a simultaneous CI for multinomial parameters

can be found by first estimating the value of ¢ where
vie)=Pxi—c<X <xi+ci=1,....,0=1-a (2.53)

and X} has a multinomial distribution with n and'p = (p1, ..., pr) [62]. Then define

_ [ —a)—v()]

7T et =) (2.54)
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and the following skewed confidence region is recommended:

(C+27)-i:1,...,k) (2.55)

. cC -
(Pi——SPiSPi+ ;
n n

[62]. Determining the CI in Equation 2.55 may be difficult, however this method is coded to
be implemented in SAS software [39]. The SAS code was later adapted into the MultinomialCI

package for R, which makes this CI very easy to use [52, 69].

2.8 Summary

Optimal points are important for classification systems, as they represent a system’s optimal
performance with respect to classification accuracy. Metrics for characterizing the performance of
a classification system’s optimal point are developed by the maximization of correct classification
probabilities or minimization of misclassification probabilities (i.e. J and BC). Minimization of
the misclassification probabilities allows for more flexibility in the optimal point selection, and
therefore is chosen as a focus for this work.

Little work has been done previously to quantify the uncertainty around BC. Thus, methods
for quantifying uncertainty in a classification system’s BC value are derived and presented in
the following chapters, for both parametric and nonparametric settings. Confidence intervals and

hypothesis tests are developed to provide a range of flexible inference methods.
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III. Parametric Confidence Intervals

3.1 Introduction

The purpose of this chapter is to derive Cls for BC, for any number of k classes, in order
to quantify the optimal performance of a classification system and compare systems based upon
performance criteria. These methods are developed under the assumption of a single feature that is
independently and normally distributed for each class, because the feature used for the classification
is often assumed to follow a continuous distribution, most commonly normal [23, 30, 33, 36, 40, 45,
47, 49, 54-56, 58, 64, 65, 75, 79, 80]. Placing a parametric assumption on the feature distributions
allows for the use of convenient statistical methods for the evaluation of the classification system,
with accurate results when the parametric assumptions are correct. Also, the assumption of a
normally distributed feature is useful as often transformations to normality are common place when
the feature follows a skewed continuous distribution, such as gamma or log-normal [45].

In Section 3.2, the delta method is used to approximate the variance of BC and the optimal
thresholds for the development of their associated CIs. A numerical estimation technique is also
presented as a method for efficiently estimating the partial derivatives that are required for the delta
method approximations. Numerical estimation is especially useful (and necessary) when there are
more than two classes, as it can be used to solve equations which are difficult or impossible to solve
analytically, while remaining very accurate [25, p.1]. In fact, the optimal thresholds for BC must
be found numerically (when weights on misclassification probabilities are not equal), and therefore,
their partial derivatives with respect to the normal distribution parameters (2k> — 2k of them) must
also be solved numerically. Although the 2k partial derivatives of BC with respect to the normal
distribution parameters can be found analytically, the derivation becomes cumbersome for large k.
Therefore, numerical estimation techniques allow for easy extension of the delta method CIs to k
classes.

In Section 3.3 GClIs are derived for the k-class J and BC, again assuming a single feature that
is independently and normally distributed for each class. Although CIs for BC are the focus of this

work, the GCI for the extended J is also presented as it is not currently available in the literature.
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GClIs for the optimal thresholds are also presented. In Section 3.4, available bootstrap CI methods
which may be used when the classification system is developed with parametric assumptions
are discussed. Simulation results are presented in Section 3.5. The simulation examines the
performance of the delta and generalized Cls, and compares these CIs’ performance to that of
available bootstrap ClIs. Specifically, coverage probability, coverage symmetry, length of Cls
and bias of BC are assessed under a variety of classification system settings, including varying

distributional parameters and costs. Finally, the results are summarized in Section 3.6.

3.2 Delta Method Confidence Intervals

The delta method uses the first order Taylor series expansion to estimate the variance of
functions of parameters [12, p.242]. A multivariate version of the delta method is given in the
following theorem.
Theorem 4 (Multivariate Delta Method).

Suppose that 0 is Asymptotic-Normali(6, b>X) with b, — 0 and that g is a real-valued
function with partial derivatives existing in a neighborhood of 6 and continuous at 0
with g'(0) = 0g(0)/06 not identically zero. Then as n — oo

g(’0\) is Asymptotic-Normal[g(6), big'(O)Zg'(O)T]

[8, p. 238]

Often b, is taken to be % [8, p. 238]. In Theorem 4, @ is used to represent any vector of statistical
parameters. This theorem is applied for BC and the optimal threshold values, ¢, , which are both
functions of (u, o).

3.2.1 Bayes Cost and Optimal Thresholds, 3 classes.

Recall, if the classification system is developed using a single feature for the classification
of three classes, where the feature is independently and normally distributed for each class with

U1 < pp < w3 and with two threshold values used to distinguish between the classes (denoted

01 < 6), BC can be expressed using the standard normal CDF and the optimal threshold values
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which minimize BC as:

05 — o7 — -0
o1 o1 01

0 — o uo =65
+ cipp2 X (‘D( L )) + c3pp2 X (‘D( 2))
(o) (o)

9* _ 8* _ 9* _
+c3p3 X (q)( 1 )) + C3p3 X ((D( 2 M3) - (I)( 1 )) (2.21)
o3 g3

g3
Note that the minimization is not expressed in Equation 2.21 as it uses the optimal thresholds
(6] < 63). The optimal thresholds must be estimated numerically when all ¢;;p; are unequal, for
i # j.For BC defined in Equation 2.21, BC = g(x,$?) . Since (¥, §?) are asymptotically multivariate
normal, the multivariate delta method may be applied (see Appendix A.1 for asymptotic properties
of (%, S?)). Therefore, by Theorem 4, BC is Asymptotic-Normal[BC, Var(f}Z‘ )] and the variance of

BC from Equation 2.21 is estimated according to the delta method using the following equation:

2 2 2
Var(Eag) ~ (856;3) Var(iy) + (6523) Var(iz) + (5523) Var(i3)
2 2 2
+[28G Var@y) + 9BC; Var(c3) + 9BC Var@3) (3.1)
0o dop do3

where all covariances are zero due to the assumption of independence between the feature’s

distributions for each class. Letting iij = Xjand &; = S, Var(it;) and Var(c;) are [56]

o2
Var(ii}) = n—f (3.2)
J
and ,
fom

Thus, to estimate Equation 3.1, the partial derivative of BC3 with respect to the normal distribution

parameters, y; (Where y; = ujor ojand j = 1,2, 3), are defined

OBC 1 |6, 067 1 [06; 06, 1 [06; 06,
gl

i 2
bic Y’ Tic_ 2 TE+2F
dy; Oy, dyj 0y dyj  0vj

= — +0,, 34
dy; ol o2 o3 & ©4
where fory; = y;

+ (A - B) forj=1

Op; = ;—2 (B - C) forj=2

—;—3(E+F) for j=3
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orfory; =o;

Oi—m\ 05— .

B( p ) A( i for j=1

S, = {p (%2 —c(ggf‘;‘2 for j=2
73 93

H—61\ 36 .

B(5F) - () fori=s

and for both y; and o

05 —
A =pi (e —c3|1)¢( 20_1 )

9*—/11
B=p1€z|1¢( 101 )

97—/12)

C= P261|2¢(

M2 — 05
D= P2032¢( 2)

%

0 —u3
E=P3(Cl|3—62|3)¢( 10_3 )

*_

0y — 3
F = p362|3¢( 203 )

A more detailed derivation of these results is presented in the Appendix, Section A.2. The six

partial derivatives of BC with respect to u; and o ; in Equation 3.4 are estimated using the numerical

estimates for g%’;f and g%"; (described in Section 3.2.3, m = 1,2, j = 1,2,3) as well as ii; = X;
and 0; = §; . Using these estimated partial derivatives, the variance of an, is estimated. The

(1 — @)100% delta method CI for the three-class BC is

BCs + 2 \Var(BGC3) (3.5)

Confidence intervals around the optimal thresholds in addition to the CI for BC are also
of interest. There are three solutions for determining the optimal thresholds in this parametric
framework. First, when all ¢;;p; are equal, for i # j , the optimal thresholds may be found

equivalently as with J (see Section 2.5.2). Therefore, the solution for the optimal thresholds is

pm(B? = 1) = a+ b \Ja® + 2(b* — 1)o? In(b)
o =
" -1

(3.6)
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Om+l

where a = ;41 — iy and b = M= 1,...,k—=1[56]. Second, if 0, = 0,+1 the optimal point

is the midpoint between the means [56]:

6 = % 3.7)
Finally, when all ¢;;p; are not equal, for i # j , the optimal thresholds must be estimated using
numerical minimization (see Section 3.2.3). Whether 8;, is found using Equation 3.6, Equation 3.7,
or numerically, the optimal thresholds’ estimates are functions of the sample mean and variance

(’0\* f(x,8%)). By Theorem 4, 9* is Asymptotic-Normal[6;, Var(@fn)] and the delta method

approximate variance for each of the two optimal thresholds is given by

i\ 2 * %

(96, BT A R T /A S
Var(ém)~ o Var(uy) + s Var(u,) + s Var(uz)

0N oo\ (oer Nt
+ Var(oy) + Var(oy) + Var(os) (3.8)
ooy oy 0o

This estimate provides a (1 — @)100% delta method CI for each optimal threshold of é;k:, +
4 N Var(éf”) , as was demonstrated in [65].

3.2.2 Bayes Cost and Optimal Thresholds, k classes.

These methods extend easily for £ > 3 classes. When there are k classes, BC may be expressed

using the normal CDF as

9*
BC = C1|jqu)( ‘,U])
= gj
k-1 k " s« k-1 s
g _. - L _ 0
DI [cb( e J)—@( amml ) +chjpj<1>(”—] "‘1) (3.9)
i=2 j=1 7 7i =1 7
I#]
The (1 — @)100% CI for BC is still BC + z5 /Var(BC) where
k 2 2
dBC ___ (8BC _
Var (BC) ;1 (a_y,) Var(/Jj)+(67j) Var(aj)l (3.10)

and the partial derivatives may be estimated using Equation 3.4 for three classes, Equations A.4
through A.11 in Appendix A.3 for four classes, or the methods described in Section 3.2.3 below for

any k classes. Similarly, the (1 — a)100% CI for each optimal threshold is g, + 2g \ \7(;(6/,’51) where

k

Var (Am ~ Z

J=1

>k 6 *
"\ ar (i m
(8/1] ) ar)+ (80'j

2
) Var(o/'\j)l (3.11)
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When all ¢;j;p; are equal (WLOG assumed to be one), for i # j, the partial derivatives are given
in Equations 2.28 through 2.31 with class 1 and class 2 being replaced with class j = m and class
j =m+ 1 for the m™ optimal threshold (m = 1,...,k — 1). When the costs and prevalences are not
equal, the optimal thresholds must be found numerically and the partial derivatives are estimated
using Equation 3.13. Note that these CIs for & classes define the CIs for k = 2 and 3 classes as well.

Finally, it is worth noting that there exists covariance between each m and m + 1 threshold, due
to the thresholds’ shared dependence on the feature’s parameters of the class between them and may
be estimated with the delta method as

) (525

O j=m+1

06"

m+1
Var(i—m+1) + (
aﬂj:m+1 ) GIJ m+1

69;1 )( agjnﬂ

Var(c i—m+1) (3.12
ao—j:m+l ao—j:m+l) ( Jj=m+1 ( )

[36]. This covariance may be used for constructing confidence regions around pairs of optimal
thresholds.
3.2.3 A Method for Numerically Estimating Partial Derivatives.
Although the solutions to the optimal thresholds, 6;, , are functions of the distributional
parameters, they generally must be found numerically when minimizing BC. Therefore, the partial

derivatives ai"? and % (j =1, ..., k represents the true class and m = 1, ...,k — 1 denotes the optimal
J

> Bu;

thresholds), must also be estimated numerically. This can be accomplished using the two-point

central difference method [25, p. 254]. Applying this method, for y; = u; or o;

96, Ou(vj+e)-0,(yj— &)
Oy 2¢e

(3.13)

leaving all other normal parameters constant for each calculation. The term 6, (y; + £) is determined
using the same numerical minimization method as that used to find the optimal threshold values.
The truncation error for this difference method is O(&?) . The & value should be chosen to minimize
the error of the approximation, which for double precision (using 64 bits to store values) would be

—16
+0(%) (3.14)

Error ~

This error would be minimized for & on the order of 10~1%/3, Therefore, a small & should be chosen;

however, & should be > 107> to avoid inflating the error caused by computer precision.
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The partial derivatives of BC can be found analytically, and were presented in Section 3.2.1
for three classes and in the Appendix, Section A.3 for four classes. For any k classes, the partial

derivatives for BC can be approximated by

OBC _BC(yj+¢&)—-BC(y;-¢)
dvy; - 2¢e

(3.15)

where BC(y; + &) is found using Equation 3.9 for y; = u; or o; , and using equivalent values for &

as discussed for 6, .

3.3 Generalized Confidence Intervals

In [33], GCIs? are developed for the two-class J as an exact method for constructing CIs around
J and the optimal threshold when the feature used for classification is independently and normally
distributed for each class. Define { = (6, §) where 0 is the parameter of interest and § is a vector of
nuisance parameters.
Definition 1 (Generalized Pivotal Quantity).

Let R = r(X; X, () be a function of X and possibly X, { as well. The random quantity R
is said to be a generalized pivotal quantity if it has the following two properties:
Property A: R has a probability distribution that is free of unknown parameters.
Property B: r,,s defined as rops = r(X;X,() ... does not depend on nuisance
parameters, 0. [73, p. 146]

Definition 2 (Generalized Confidence Interval).
If the subset C, of the sample space p of R satisfies (Pr(R € Cy) = ), then the subset
Oc of the parameter space given by Oc(r) = {6 € O | r(x;X,{) € C,} is said to be a
100y% GCI for 6. [73, p. 146]

3.3.1 Youden Index, k Classes.

In [33], a GCI is developed for the two-class J by constructing generalized pivotal quantities
(GPQs) for uj and o (j = 1,2), and then using these pivotal quantities to construct GPQs for the
optimal threshold and J. For a classification system with & classes and a normally distributed feature,
there will be k — 1 optimal thresholds, one between each pair of normal distributions. Therefore, in
order to extend this method for k classes, k — 1 GPQs for the optimal thresholds must be determined

and used to define the GPQ for J (defined as the sum of all correct classification rates). Each optimal

%In [66] it was noted that the implementation of these GCls is identical to constructing the Cls via Bayesian Inference
using the non-informative prior (p(u, o) o ULZ).
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threshold value is determined explicitly by the distributions of the two classes it divides [46]. For
this problem, J is the parameter of interest and the mean (u;) and variance (cr?) from each class are

the nuisance parameters. Then (as is done in [33] for two classes) define

R, =% 10 (3.16)
. =X =1 .
M J j\/l’l_j
(nj = DS?
Ry, = \|—— (3.17)
Vi
where
Xj—
(3.18)
TSI
and
(n,—1)5§
Vi= —— (3.19)
g

The sample mean (x;) and standard deviation (S ;) are from the j’h class, 7; ~ 1(y;-1) , a t-distribution

random variable with n; — 1 degrees of freedom, and V; ~ )(i _, » achi-square random variable with
J

n;— 1 degrees of freedom [12, p. 218, 223]. To find the k — 1 GPQs for the optimal thresholds (Rg;, ,

indexedonm = 1,2,...,k — 1), first define the following k — 1 GPQs

Ram = R,Uj:m-*—l - Rllj:m (320)
]? j=m+

Ry, = o (321)
RO' Jj=m

Next, the GPQs for the k — 1 optimal thresholds are computed as

Ry (R2 ~1) =Ry, +Ry, \/Rgm +(R2 ~ DRy, In(R? )
Ry, = (3.22)

2
Rbl?‘l - 1

form=1,2,...,k— 1. Using these GPQs, the GPQ for the k-class J is defined as

Ry —R,\ [ (Re —Ry Ry —R,, R, — Ry
Ry = cp(—‘ ad ) £y CD(—'"" ”’) - @(—m" L )] + O (—”k “) (3.23)
Ro, = Ry R, Ro,

J

It is clear that R,; and R, do not depend on any unknown parameters and therefore, Ry;, and R,
(defined only with R,,; and R,-;) do not depend on unknown parameters. This satisfies property A

of Definition 1. Also note, r;

obs

= R;(X,S) is evaluated by using x; and S ; in Equations 3.18 and

3.19 and then substituting Equations 3.18 and 3.19 into Equations 3.16 and 3.17, respectively. This
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results in Rﬂj(i, S) = uj, jo(i, S) = o, and Ry (X,S) = 6;, . Evaluating R; with these values
gives R;(X,S) = J ; therefore r;, does not depend on any nuisance parameters and property B of
Definition 1 is met.

Finally, a CI around J can be found using Monte Carlo simulation by generating a large number
(K~ 2,500) of random draws from ¢; and V; for each class, j = 1,...,k. Using these values in
Equations 3.16 through 3.23, K R; values are calculated. Then the (%)IOO”‘ and (1 — %)100”‘
percentiles of R; are defined to be the lower and upper bounds for the (1 — @)100% GCI around J,
respectively [33]. Also note, the (1 — @)100% GCI around each of the k — 1 optimal thresholds can
be found similarly using the appropriate percentiles of each Rg; GPQ (m =1,...,k—1).

3.3.2 Bayes Cost, Equal Weights.

The GCI around BC from a classification system with equal ¢;;p;, fori # j (WLOG pjc;; = 1,
accomplished by scaling BC by the reciprocal of the common multiplier), are found using the GPQs
for the mean, standard deviation, and k — 1 optimal thresholds in Equations 3.16 - 3.22. The mean
and variance of the feature’s distribution for each class are still the nuisance parameters, and BC is

the parameter of interest. Then the GPQ for BC is

k. (Rg —R
o Hj
RBC = Z (o (I—) +
. R,.
j=2 /
i=2 j=1 Ko, Ko, =1 Re,
1#]

It is clear, as was discussed for R; in the previous section, that Rpc is a GPQ meeting both properties
of Definition 1. The (1 — @)100% GCls around BC and the optimal thresholds may be found using
Monte Carlo simulation as was described for J and the optimal thresholds in Section 3.3.1.

3.3.3 Bayes Cost, Unequal Weights.

In this section, the GCI for BC from a classification system with unequal c;;p; , fori # j,
is developed. Once again, the nuisance parameters are the mean and variance of the feature’s
distributions for each class, and the parameter of interest is BC. With unequal costs, the GPQs
for the optimal thresholds can no longer be found using the closed form solution in Equation 3.22.

Although there is no closed form solution for Ry , the optimal thresholds are functions of the mean
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and variance of each class and can be found with numerical minimization. The GPQ for BC is

defined, now with costs and prevalences on the misclassification probabilities:

k
Ry — Ry,
Rac = cupo (<)
aj

j=2
k-1 k k=1
Ry —Ry Ry  —Ry Ry, — Ry |
+ cijpj [CD( ) - <I>( — ) + > cnjp;®@ (— = ) (3.25)
; j:1 Ro'j Ra'j ; R(Tj
I#]

The k — 1 optimal threshold values’ GPQs (Rg; ) are found numerically for each of the K sets of
Ry; and R, values from Equations 3.16 through 3.19 (this requires K numerical minimizations of
Equation 3.25, resulting in K Rg: values and K Rpc values). Once again, Rg: = f(R,, R,) and each
Ry, does not depend on any unknown parameters. Therefore, as was seen for J and BC with equal
weights in Sections 3.3.1 and 3.3.2, Rpc in Equation 3.25 does not depend on unknown parameters
and achieves property A of Definition 1. Also, R,lj(i, S)=u;, R(Tj(i, S) =0;,and Ry (X,S) = 6, ,

resulting in rpc,, = Rpc(X,S) = BC , which does not depend on nuisance parameters. This satisfies

obs
property B of Definition 1. Once again, by randomly generating K values of #; and V; for each
class, K Rpc and Ry, values are determined with numerical minimization. Then, the (1 — @)100%

GCl around BC is determined as the ($)100™ and (1 — )100" percentiles of Rpc (or similarly, the

analogous percentiles of Ry are used to construct GClIs around the optimal thresholds).

3.4 Bootstrap Methods

Bootstrap methods were introduced by Efron in the 1970s [12, p. 478]. The bootstrap can be
used for creating Cls for large or small data samples where the assumptions inherent for other
methods are not met. With increasing computing power, the bootstrap has become a popular
method for constructing ClIs. Typically, a nonparametric bootstrap sample X* = (Xj,..., X)) is
created from a random sample X = (Xj,...,X,) where a new sample of size n is drawn from X
with replacement. It is also possible to draw a parametric bootstrap sample, where an underlying
distribution (Fx(x | 5)) is assumed known and whereg(orﬁ) is an estimate for the true parameter
6 (or parameters, #) from the initial sample X [11]. Then, the bootstrap sample X* is created

by sampling n times from the distribution (Fyx(x | 0)). The work in this dissertation utilizes
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nonparametric resampling, which is the sampling procedure most commonly used. Generally, a
large number (B) of bootstrap samples (X*) are drawn in order to construct Cls.

One common bootstrap CI assumes asymptotic normality of the parameter estimate. This is
accomplished by estimating the variance of the parameter estimate from the B bootstrap samples and
using this variance with standard normal quantiles to construct a CI. This method generates what
is known as an asymptotic normal (AN) bootstrap CI [14]. This method, however, is not robust
under transformations of the parameters, and could also possibly include values in the interval that
are not valid (for example, BC values less than zero) [11, 14]. Therefore, two other bootstrap CI
methods are considered which are the basic percentile (BP) bootstrap CI and the bias corrected
and accelerated (BCa) bootstrap CI. The advantage of the BP CI is that the resulting interval
will not include invalid values of the parameter of interest, since the CI bounds are found as the
appropriate percentiles from the B bootstrap estimates of the parameter. However, a disadvantage
to this method is that the coverage will be low when the distribution of the estimated parameter
is not symmetric [11]. The BCa CI has the same advantage of the BP CI, however also performs
well for skewed distributions of the estimated parameter [11]. All three of these bootstrap Cls are
implemented using the boot.ci function in the boot package in R [10, 15, 52]. For more information
on the bootstrap see [15].

The performance of the bootstrap CIs may be impacted by the method used for estimation of the
parameter of interest, as different estimation techniques result in different levels of bias depending
on the true scenario (here, classification system structure as well as feature distributions). For
comparison to the parametric Cls for BC presented in this chapter, the point estimates for BC and

6" are estimated parametrically as is done, for example, in Equations 2.21 and 3.6, respectively.

3.5 Simulation Results

A simulation study was conducted to demonstrate the performance of the delta method and
generalized Cls around BC, and compare their performance to available bootstrap CI methods. The
performance of CIs around the optimal thresholds is also evaluated. Various classification scenarios
are considered including different sample sizes, underlying distributions of the feature used for

classification, differing costs associated with the misclassifications, and classification accuracy
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(measured by the BC value). All scenarios assume a classifier with three classes and two optimal
thresholds (6] < 65) to distinguish between adjacent classes. Thus BC3 could range from completely
accurate, BC3 = 0.0, to misclassifying all observations, BC3 = 3.0. Five BC3 values are chosen
to demonstrate a range of classification system performances (all better than chance classification
which occurs for BC3 = 1.5). These values are BC3; = 0.27, 0.42, 0.63, 0.91, and 1.23. The
distributional parameters for each class are determined by varying each distribution’s mean and
variance in order to achieve the desired BCs value. The parameters for all scenarios are presented

in Table 3.1.

In Section 3.5.1, it is assumed that all ¢;;p; are equal, for i # j . Using this equal
cost/prevalence structure, various distributions on the feature are considered in order to study the
impact of non-normal distributions on the performance of the CI methods. Therefore, the CIs are
applied as described in this chapter, using the methods derived for normally distributed features. In
Section 3.5.2, two additional cost structures are used to determine if unequal cost scenarios alter the
CIs’ performance. These different costs are applied to the same normal distribution settings in Table
3.1 (o3 = 1), however the resulting BC3 values change due to the multiplication of the different
costs on the misclassification probabilities. Although the normal distributions are unchanged, the
different cost structures also result in different optimal thresholds between the classes, as is expected
when accounting for the costs placed on the different classification errors.

The bootstrap CI methods considered for comparison are the BP, AN, and BCa. All bootstrap
CIs utilize 1,000 nonparametric resamples and estimate BC3 parametrically (Equation 2.21). The
optimal thresholds (6] < 63) are found with Equation 3.6 or via numerical minimization for each
resample, for equal and unequal costs respectively. Equation 2.21 is also used to estimate BC3 for
the delta method Cls. A similar parametric formulation is used for the GCls, eliminating the impact
of bias on comparisons of coverage probability between the different CI methods. Random samples
from each of the three classes are generated of sizes n; =10 to 250 from the appropriate distributions
for all scenarios. This is repeated 5000 times (3000 times for the GCIs due to computational time)

to determine the coverage probability, left and right coverage probability (for CI symmetry), and
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Table 3.1: Distributional parameters for the parametric CI simulation.

Distribution  BC3 Class 1 Class 2 Class 3
Normal U o u o u o
(o3=1) 1.23 -1 1 0 1 1 1

0.91 -1.5 1 0 1 1.5 1
0.63 -2 1 0 1 2 1
0.42 -2.5 1 0 1 2.5 1
0.27 -3 1 0 1 3 1
Normal 7 o u o u o
(03 =2) 1.23 -1 1 0 1 1.2 2
0.91 -1.5 1 0 1 2 2
0.63 -2 1 0 1 2.85 2
0.42 -2.5 1 0 1 3.6 2
0.27 -3 1 0 1 4.4 2
Normal U o u o U o
(o3 =4) 1.23 -1 1 0 1 1 4
0.91 -1.5 1 0 1 2.6 4
0.63 -2 1 0 1 4.2 4
0.42 2.5 1 0 1 55 4
0.27 -3 1 0 1 6.9 4
Gamma o B a B a B
1.23 1.3 1 2 15 3 1.738
091 1.3 1 2 15 3 3.544
0.63 1.3 1 2 15 5 5.340
0.42 1.3 1 23 3.7 5 6.463
0.27 1.3 1 23 37 5 13.696
Normal IN(u, o) IN(u, o) o INu,o) IN(u, o)

Mixtures 123 IN(-1,2)  IN(-.2988,1)

M

0 IN(.800,1)  1N(3.600,1)
091 1N(-22351) IN(-1,2) 0

0

0

0

3N(.800,1)  $N(3.600, 1)
IN(1.200,1) 1N(3.600,1)
IN(Q2.417,1) IN(@4.817,1)
IN(5.210,1) 1IN(7.610,1)

0.63 IN(-45,1) IN(-2,2)
042  IN(-45,1) IN(-2,2)
027 IN(-4.5,1) IN(-2,2)

Y Y

the average CI length. Absolute bias of the point estimates is also determined and is discussed
throughout the following sections.
All simulations are run in R utilizing the boot package, and numerical minimization of BC is

performed using the optim function with method "L-BFGS-B” [10, 15, 52]. The partial derivatives
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of the optimal thresholds with respect to the normal distribution parameters are found numerically
as described in Section 3.2.3 with the same optim function. The partial derivatives of BC with
respect to the normal distribution parameters are calculated with Equation 3.4. Due to the large
number of numeric results for this simulation, the tables of results are in the Appendix, Section B.1.
A summary of these results follow.

3.5.1 Egqual Costs and Prevalences.

All costs and prevalences are assumed equal, with a multiplier on each misclassification
probability of one (i.e., ¢izj; = 3, pj = %). Four different feature distributions are simulated
(normal, gamma, gamma transformed to normal (via Box-Cox), and normal mixtures). In addition,
three normal distribution scenarios are considered, one with all o; = 1, one with oy = 0 = 1 and
o3=2,andonewitho; =0, =1ando3 =4.

3.5.1.1 Performance of Confidence Intervals around Bayes Cost.

The coverage probability and length for the delta, generalized, and bootstrap CIs when all
cij;p; are assumed equal, for i # j, are presented in Table B.1 for a feature with independent normal
distributions for each class and in Table B.2 for when the feature is not distributed normal. In
general, the delta method, generalized, and bootstrapped BCa CIs perform similarly and better than
the other two bootstrap CIs for BC3. When the feature is normally distributed (equal or unequal
variances), the length of all intervals are similar for n; > 50 and the length of the delta method and
generalized ClIs are slightly larger than the bootstrap CIs for n; = 10. However, the delta method CI
performs slightly better than the BCa CI when considering coverage for n; = 10 and the generalized
CI performs the best with regards to coverage for n; = 10 (only method to achieve coverage of at
least 95%). For n; > 50 both the delta method and BCa Cls have similar, good coverage (= 93 -
95%). The GCI has better coverage than the delta method and BCa bootstrapped Cls for all sample
sizes (= 95 - 96%), with comparable lengths. Changing the value of o3 does not have a significant
impact on the coverage for any of the methods.

The symmetry of the CIs for the normally distributed features are presented in Figure 3.1 for the

delta method CI and Figure 3.2 for the GCI, with 03 = 1 and 03 = 4 in rows 1 and 2, respectively.

The delta method Cls around BC3 for both scenarios are skewed left, with the skew becoming less
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extreme as n; increases. The GCIs demonstrate an opposite trend in skewness, although notably
much less extreme than that of the delta method (Right - Left coverage € [-.04,0.04] compared to
Right - Left coverage € [-10,0] for the delta method). The 5(73 bias across all scenarios is low
for the normally distributed features, as expected (absolute bias € [.00003,.05]). In general, the
absolute bias decreases as n; increases and increases when the BC3 value increases (less accurate
classification).

When the feature used for classification is distributed with an independent gamma for each
class and is not transformed to normality, coverage probability for all CI methods is greatly
diminished (see Table B.2). For all sample sizes in this scenario, the delta method and generalized
ClIs perform better than the BCa CI for accurate tests (BC3=0.27 and 0.42), worse than BCa for
very inaccurate tests (BC3=1.23), and similar to the BCa CI for the other two scenarios. The one
exception is for n; = 10, where the GCI method performs better than the delta and BCa CIs. The bias
of the estimates for the gamma distributed feature is slightly worse than with the normal distributed
feature (absolute bias € [.001, .09]) and follow the same trend as the normal feature with respect to
njand BC3 values.

When the feature is distributed gamma and transformed to normality, the coverage probability
is improved (Table B.2). However, overall, the coverage is slightly worse than when the feature
is distributed normal, especially for the accurate scenarios (BC3 = 0.27). The GCI has a slight
advantage in coverage for this distributional scenario, although this results in longer intervals than
the delta and BCa CIs. The bias of the estimates for BC3 is very similar to that from normally
distributed features (absolute bias € [.00002,.06]) and again has similar trends with n; and BCs.
Finally, when the feature is distributed as independent normal mixtures for each class, the coverage
probability for all methods is sporadic and poor, with the BCa Cls performing slightly better than
the other methods (Table B.2). The bias of BC 3 for these distributions also represents the worst
of all scenarios considered (absolute bias € [.001,.13]), with only slight improvements in bias for

increases in n; and decreases in BC3 value.
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3.5.1.2 Performance of Confidence Intervals around Optimal Thresholds.

The coverage probability and length of the delta, generalized, and all bootstrap CIs when all
costs are assumed equal with a normally distributed feature are presented in Table B.3 for 6] and
Table B.4 for ¢} . Both the delta method and generalized CIs perform well with regards to coverage
for both 67 and 6 (~ 91 — 97%). The GCl is the only method that achieves or exceeds the desired
coverage of 95% for n; = 10 , however achieving this coverage results in CI lengths which are
slightly longer than the other methods. For n; > 50 , the delta method, generalized, and AN
bootstrap CIs perform similarly. Over all sample sizes when the variances are equal (o3 = 1), the
GClIs have the best coverage and are only slightly longer in some scenarios.

When the variances are not equal (o3 = 2 or 4), the coverage and lengths of all CI methods
are unchanged from the equal variance scenario for ¢ . However, 65 depends on the third class’s
distributional parameters and therefore, the AN bootstrap CI does worse with respect to coverage
around ¢} for o3 = 2 or 4. The delta method’s coverage and lengths remain the same, and the GCI’s
performance also remains fairly constant. The BP and BCa bootstrap CIs have similar and better
performance than the AN bootstrap CI when o3 # 1.

The bias of both optimal threshold estimates are equally good (absolute bias € [.00006, .03])
when the variances are equal. The change in variance structure has no impact on the bias of 67 ,
however the maximum absolute bias for ] increases from 0.02 to 0.05 when the variance of the
third class changes. Symmetry is plotted for the delta method CIs (Figure 3.1) and the GClIs (Figure
3.2) around both optimal thresholds for o3 = 1 and 03 = 4 , rows 1 and 2, respectively. For larger
values of 073 , the symmetry of the delta method CI around 6 becomes left skewed (row 2, Figure
3.1). Once again the GCI is less skewed than the delta method CI, and although the increase in o3
appears to have a slight impact on the symmetry of the GCI around 6; , this change is very small
compared to that seen with the delta method CI.

When the feature’s distribution for each class is an independent gamma, the performance of
all CI methods for 6] and 6 is extremely poor, and becomes worse as n; increases (Tables B.5
and B.6 for 6] and 0} , respectively). Although using a Box-Cox transformation provides a slight

increase in performance for all methods (Tables B.5 and B.6), the performance is still poor and
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coverage is sporadic. When the Box-Cox transformation is used on the gamma distributions, the
GCI and AN bootstrapped CI have a slight advantage with respect to coverage for most scenarios,
although this advantage is minimal. The bias for the estimates of the optimal thresholds for the
gamma distributions and the transformed gamma distributions is also poor. For the untransformed
gamma distributions, the absolute bias of &} ranges from .01 to .9 and is largest for BC3 values of
0.27 and 0.42. Additionally, the absolute bias of §; ranges from .0009 to 1.94 and performs best for
BC3 values of 0.63. The absolute bias increases as n; increases for both optimal thresholds. For the
transformed gamma distributions, the absolute bias of ¢} ranges from .02 to 4.65 and the absolute
bias of 6 ranges from .04 to 1.4, demonstrating worse estimation than the untransformed gamma
distributions. Both of the threshold estimates have the largest bias for n; = 10, and have similar
bias for n; > 50 (absolute bias € [.02,.09]).

All CI methods have higher coverage with the normal mixtures than for both gamma scenarios
for & , but not for 6} (coverage probability for 6] with the normal mixtures is very poor). The
absolute bias of ] ranges from .04 to .17. Again, bias increases as n; increases. Also, the
bias is lowest for BC3 values of 0.91 and 1.23, which also corresponds to the best coverage for
6 . The absolute bias of ¢, ranges from .000004 to .2, and as n; increases the bias decreases.
Also, as the BC3 value decreases, the bias increases as does the coverage probability. The normal
mixture distributions for the third class are mixes of normals with the same variance (equal to
one) and different means. The normal mixtures for the first class have both different variances
and means. Therefore, the shape of the normal mixture will have an impact on the performance
of the CI around the threshold. The CI around the threshold associated with the mixture having
equal variances performed fairly well when compared to the threshold adjacent to the mixtures with

different variances.

3.5.2 Unequal Costs.

The unique advantage of using BC is the ability to consider different cost structures on the

. . . . cin ci1 1
misclassification outcomes. The two cost structures considered, where Cost = [Czu 22 Cm] , are
C31 €312 €313
012
Cost; = [1 01
210

and Cost; = [(11) § %] . All prevalences remained the same (p; = 1/3). Coverage
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Figure 3.1: Plots of the difference between right and left coverage probability (CP) for the delta
method CIs around BC3, 67 , and 6 to consider the symmetry of the CIs for n; = 10 (dotted line),
n; = 50 (dashed line), n; = 100 (dash-dot line), and n; = 250 (long dash line). Perfect symmetry
would result in values of zero, and negative values indicated the right coverage is worse than the left

coverage.
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Figure 3.2: Plots of the difference between right and left coverage probability (CP) for the GCIs
around BC3, 67 , and 6] to consider the symmetry of the ClIs for n; = 10 (dotted line), n; = 50
(dashed line), n; = 100 (dash-dot line), and n; = 250 (long dash line). Perfect symmetry would
result in values of zero, and negative values indicated the right coverage is worse than the left

coverage.
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probabilities for the 95% delta, generalized and bootstrapped Cls for BC3, 6] , and 6; are presented
in Tables B.7 through B.9. The symmetry of the delta and generalized Cls are presented in the last
two rows of Figures 3.1 and 3.2, respectively.

Similar to the different variance structures considered in Section 3.5.1, the varying cost
structures do not have a noticeable impact on the bias or coverage probability for either BC or
the optimal thresholds for the delta method or generalized Cls. The GCIs continue to perform better
than the other methods with respect to coverage around BC at small n. For larger n, the delta and
BCa CIs both perform well with respect to coverage. The CIs around the optimal thresholds have
larger length at small n and larger BC5 values. Once again, the GCls are the only CIs achieving the
desired coverage for n; = 10 . For n; > 50, all methods perform well with respect to coverage and
have similar lengths.

The symmetry of the delta method CIs around the optimal thresholds is altered by the different
cost structures. Cost; distributes the costs evenly across class one and class three, resulting in
asymmetry around both optimal thresholds (6] is skewed right and ¢; is skewed left). Cost, assigns
the highest costs on class three, second highest costs on class two and lowest costs on class one.
This results in the delta method CI around 6] to become skewed right, while having no impact on
the symmetry of ¢, . Asymmetry of the delta method Cls around the optimal threshold caused by
varying the cost structure was also noted in [30] (for a two-class scenario, found using the GYI).
Interestingly, the delta method Cls around BC maintain a fairly constant asymmetry for all cost and
variance structures considered (Figure 3.1, column 1). Finally, although the varying cost structures
have some impact on the symmetry of the GCIs (Figure 3.2, rows 3 and 4), this change is once again

much smaller than that observed with the delta method Cls.

3.6 Summary

The delta method and generalized CIs were derived for BC under the assumption of a single
feature used for classification that is independently and normally distributed for each class in a
multi-state classification setting. Using simulations, the delta method CIs are shown to have good
coverage for sample sizes of 50 or larger within each class and the GCIs are shown to have good

coverage for sample sizes of 10 or more within each class, when the assumption of normality is
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met for both methods. Notably, the BCa bootstrap CI with a parametric estimate of BC performs
very similar to delta method CI around BC for most scenarios when the feature is normal. The
performance of the delta method, generalized, and BCa bootstrapped Cls around BC is degraded
when the assumption of normality is not met (for untransformed distributions). Performance of
the derived CI methods around the optimal thresholds is also studied in the simulation. The delta
method and generalized CIs around the optimal thresholds perform well when the assumption of
normality is met, and are more robust to changes in variance than the three bootstrap methods
considered. When the normality assumption is not met, all CI methods around the optimal
thresholds have poor performance, with the performance being slightly better for specific normal
mixture distributions. In addition, all CI methods are shown to be more robust to departures from
normality for CIs around BC when compared to the same CI methods around the optimal thresholds.
Finally, the GCIs performed the best with respect to coverage for a normally distributed feature (all
sample sizes) with similar lengths as the other methods. The GCI have slightly longer lengths for
the small sample size scenarios (n; = 10). However, the GCls are the only method achieving the
desired coverage for this sample size, and therefore the longer length is expected. Therefore, the
GClIs are recommended for all sample sizes and costs, and the delta method ClIs may also be used
for any large sample size and cost scenario (both for a normally distributed feature).

When all ¢;;p; are equal, for i # j, performance of CIs around BC may be compared to CI
methods for J, as these two metrics measure performance equivalently (see Theorem 1). Currently,
there are more CI methods available for J, although notably usually only for two classes. In general,
the literature which proposes Cls for J use inconsistent bootstrap methods for comparison of the new
methods’ performance, making comparisons across all methods difficult. In [36], several estimates
of J were considered for the bootstrap Cls (parametrically, empirically, Gaussian kernel smoothing,
and kernel smoothing with Sheather-Jones algorithm), however, only BP Cls were presented which
were shown in this chapter to only perform well for very large samples when considering a CI
around BC. In [64], the empirical and parametric estimate of BC were both considered for the
bootstrap CIs, however again, only the BP CI was utilized. Three bootstrap CI methods (BP, AN,

and BCa) were used in [56], however, only empirical estimates of J and the optimal thresholds were
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used with the bootstraps instead of parametric estimates for comparison to the delta method Cls
(with the bootstrap CI performing worse than the delta method CI). This is expected, since in [45], it
was shown that when classification systems result from a normally distributed feature, an empirical
estimate of J has larger bias than the parametric estimate. Finally, in [33], a parametric resample is
used with the assumption of a single feature with independent normal distributions for each class,
with fairly good results. All other methods discussed utilize a nonparametric resample of the data.
It would seem that if the feature is assumed to be normally distributed, then such an assumption
should extend to the comparative methods, which suggests that the parametric estimation of BC
with a BCa bootstrap is the appropriate bootstrap method. In this chapter it was shown that for
a CI around BC (or similarly J) a parametric estimate of BC with a BCa bootstrap CI performs
very similar to the delta method CI, and therefore is recommended for use when implementing a
bootstrap CI for BC with a normally distributed feature. This bootstrap method outperforms those
with empirical estimates of BC or J as the empirical estimate results in a higher bias compared to the
parametric estimate [36, 45]. However, the BCa CI does not perform as well as the GCI around BC
for a normally distributed feature with small sample sizes (n; = 10) or as well as the delta method
CI for accurate classification scenarios with a gamma distributed feature.

Another result of interest from the simulation study is the consistency of the delta method CI
around BC to be skewed left (under all distributional and cost structures considered). This appears
to be a result of the BC metric being the minimization of the misclassification rates (subject to
prevalence and cost multipliers). This skewness is not seen with the GCI. Although asymmetrical,
the delta method Cls still achieve the desired coverage probabilities and therefore the asymmetry
is not necessarily a point of concern. The delta method CIs around the optimal thresholds are
symmetric for equal variance of the feature’s distribution for each class and balanced cost structures.
Changing the variance or cost structure will impact the symmetry of the optimal thresholds’ delta
method Cls, as might be expected. In [30], asymmetry of the delta method CI around the optimal
threshold was also noted when using the GYT for varying values of R (the prevalence and cost/benefit
ratio) in the two-class framework with a normally (or log-normally) and independently distributed

feature. Again, although the symmetry of the delta method CI is changed, the coverage still
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meets desired levels for large n. Much smaller asymmetries are observed with the GCIs. Because
symmetry is expected to behave similarly for other comparable scenarios of BC and threshold Cls,
it will not be examined further in other methods.

Numerical estimation of the partial derivatives required for implementation of the delta method
makes the application of the delta method Cls in this chapter (especially for £k > 3 classes)
more tangible. The methods presented in this chapter are especially useful since transformation
techniques, such as the employed Box-Cox transformation, can be used to transform data to
normality in order to meet the required assumptions so long as the underlying distributions lie in
the Box-Cox family [45]. In Section 3.5, it is shown that the delta and generalized Cls around BC
perform well and the Cls for the optimal thresholds do not perform well with respect to coverage
for data transformed to normality. This further illustrates the usefulness of the CI around BC for
choosing the best classifying feature, even when the optimal thresholds require further study to be

determined accurately.
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IV.  Nonparamteric Confidence Intervals

4.1 Introduction

A CI for BC that does not require information about the structure of the classification system
or feature distributions is derived in this chapter for any k classes. A nonparametric method for
constructing a CI around BC is useful because small data sets or classifiers where distributional
assumptions are not suitable occur regularly [5, 35, 37, 38, 57, 59]. Current nonparametric methods
for J require large sample sizes (see Section 2.5.1). Although no distributional assumption is placed
on the underlying feature(s), the classification outcomes from each class resulting from a fixed 8 € ®
are modeled with independent multinomial distributions.

This nonparametric CI around BC is developed in Section 4.2 using the fiducial argument.
Available bootstrap methods that may be used in the nonparametric framework for constructing a
CI around BC are presented in Section 4.3. In Section 4.4, simulations are used to demonstrate
the performance of the newly developed method in Section 4.2 and compare its performance to
other available CIs around BC in two- and three-class scenarios. Scenarios where the underlying
classification system is unknown and scenarios with known normal distributions are considered. In
Section 4.5, the newly developed method is compared further with available methods for developing

simultaneous Cls around multinomial probabilities. Section 4.6 contains a summary of the results.

4.2 Fiducial Intervals

This section develops a CI for BC that requires no underlying distributional assumptions on the
classification system. This CI is developed using the fiducial approach which was first introduced in
1930 by R.A. Fisher in his paper, “Inverse Probability” [21]. The fiducial argument has been used
successfully for similar inference on statistical parameters [31, 74, 78], one very popular example
being the Clopper-Pearson CI ? for a binomial proportion (see Section 2.7.1.1) [13, 72]. The method
developed in this section may be implemented for any (small) sample, k-class classification system

and has a minimum coverage of (1 — @)100%.

30r fiducial interval, as these two terms are used interchangeably by Clopper and Pearson [13, 72]

55



The proposed CI requires only the observed classification outcomes, and assumes the outcomes
are distributed multinomial. Section 4.2.1 derives the proposed method using the fiducial argument
for the k-class BC with all ¢;jp; equal, for i # j . In Section 4.2.2, the method is extended for
BC with unequal costs and prevalences. An algorithm for computing the upper and lower bounds is
presented in Section 4.2.3 and an equivalence to a multiple of the Clopper-Pearson CI under specific
conditions is also presented in Section 4.2.3.2. Finally, this method may be used equivalently for J,

which is shown in Section 4.2.4.

Definition 3 (Fiducial Interval). A (1-a)100% fiducial interval for a parameter 6 is the set of values
of 8 which could have given rise to the observed value Y=y with the specified probability 1 — «, and

Y = t(Xy, ..., X)) a statistic from the random sample X1, ..., X,, with distribution Fy(y|0) [72].

Therefore a (1 — @)100% fiducial interval for a parameter 6 derived from an observed statistic

Y = #(X1, ..., X,;) can be found as the solutions for §; and 6y in the following equations [72]:
Pr(Y 2y|6y) = 4.1

Pr(Y <yl|0y) = 4.2)

DI MR

4.2.1 Bayes Cost with Equal Weights.

Initially, it is assumed that all ¢;;p; are equal to one, for i # j*. Then BC can be expressed as
the sum of the k> — k misclassification probabilities resulting from the k-class classification system.
Here, the minimization is excluded because it is assumed the classifier is applied at its optimal
setting, or more generally at a fixed setting. Specifically,

k k
BC = Z Z Dilj 4.3)

i=1 j=1
I#]
where each p;; is the probability of classifying an observation from class jas classi (j = 1,...,k

andi =1,...,k). The statistic used to estimate BCis Y = BC where

a Xij
y=>> o (4.4)

4As long as all multipliers on each misclassification probability are equal, the multiplier can be scaled to one without
changing the classification outcomes.



Each X;; is a multinomial random variable representing the number of observations classified as the
i class when their true class is j , and n; is the total number of observations for the j™ class.

The statistic Y is a function of discrete random variables representing a projection into the one
dimensional rational space (Q), and can be ordered (possibly with ties). From Equations 4.1 and
4.2, the (1 — @)100% fiducial interval for BC from an observed statistic ¥ = y is determined by the

values of BCy, and BCy that are the solutions to the following equations:
Pr(Y 2y | BCp) = 4.5)

Pr(Y <y|BCy) = (4.6)

IR NIR

To find these solutions, the probability distribution of Y with respect to BC must be determined.

For each class, Xj = (X, ..., Xy,) ~ multinomial(pj, n;) , where each Xj; is a nonnegative integer
and Zf.‘: | Xijj = n;j . The multinomial pmf for X is of the form

MW:WBET 4.7

[12]. Therefore, the joint pmf for all k? random variables, X = (X1, ..., X}), from the k independent

multinomial distributions resulting from the k-class classifier is

k
A =] [ A0

j=1
kk ilj
=[] ]nt=2 (4.8)
X!
i=1 j=1 ilj
Let S represent the probability parameter space for the entire experiment, p € & = {p =

P1,--->Px) : Pj = (Pujs--->puj)spij = 0, and Zlepiu = 1} . Also let A be the joint

multinomial sample space that is the set of 1 X k? sized vectors where A = {x = (Xq,...,Xk) :
Xk = (X11j, ..., X)), Xij € L, Zle x;; = n;} . For a single multinomial distribution, there are
n+k-1
4.9
n

distinct elements in the sample space. For example, for k = 3 outcomes and n = 2 observations

from a single multinomial experiment, there are six elements (shown in Table 4.1). In addition, for
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Table 4.1: The multinomial sample space for 3 outcomes and n = 2 . Each row represents a potential

draw from the multinomial experiment.

X Xa; Xy

2 0 0
1 0 1
1 1 0
0 0 2
0 1 1
0 2 0
a k-class classification system, there are
klnj+k-1
[] (4.10)
j=1 n;

distinct ways of sampling from this joint multinomial experiment (ie. number of elements in A).
Clearly, as k and each n; increase, this sample space becomes large. For the previous example where

k =3 ,if each n; = 2 there are 216 distinct ways of sampling from the joint multinomial experiment.

With the assumption of all ¢;;p; being equal, for i # j, the sum of the k — 1 misclassification
rates for each class may be treated as a total misclassification rate for that class. BC can then
be defined using the total misclassifications only, as it is unnecessary to distinguish between the
types of misclassifications (e.g. Xp;1 vs X3)1). For simplicity of notation, the sum of the k — 1

misclassification probabilities from each class is denoted pje|; :

k
PR = ). pij @.11)
%

The total number of misclassified observations from each class is denoted Xje|; :

k
Xijelj = Z Xilj (4.12)
7y
The independent multinomial distributions can be collapsed into k independent binomial

distributions, with the total misclassifications representing success and the correct classifications
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representing failure in each class. Thus for each fixed j,

k
Zi:l Xil/

nj
k
Xizjij + Zigj Xilj = nj
Xpelj =nj = Xi=jj (4.13)

# of misclassifications = n; — # of correct classifications

L

Xjeij ~ Bin(nj, pjei)
Considering only the total misclassifications for each class (modeled as independent binomial

random variables), the size of the sample space for the classification system is reduced to

k
[ ]+ 1) (4.14)
=1

The reduction of the sample space is demonstrated in Table 4.2 with a single class from the previous
example, where kK = 3 and n = 2 . In this example, the number of elements in the sample space for

one class is reduced from six (multinomial sample space) to three (binomial sample space).

Therefore, the joint pmf for the k> independent multinomial random variables, X =

(X111, X1, - - - Xi—1jk» Xijk) » can be expressed using the joint pmf for k independent binomial random

Table 4.2: A multinomial sample space reduced to a binomial sample space for 3 outcomes and
n = 2 . Each row represents a potential draw from the experiment (assuming the truth class is 1,

therefore X1\ is the correct classification)

X Xon Xapn X Xon + Xa Xy Xpen

2 0 0 2 0+40=0 2 0=n-2
1 0 1 1 0+1=1 1 1=n-1
1 1 0 - 1 140=1 > 0 2=n-0
0o 0 2 0 0+2=2

0 1 1 0 1+1=2

0 2 0 0 2+0=2
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variables, X = (Xje|1, ..., Xkex) , where each X|; is a nonnegative integer and 0 < Xje; < n; :
k
AP = | | A0
j=1

(ijIj)ijU (1 _ pjcu)le./'
nj!

—-

. a0
Xjo ! Xjlj

( nj ) (pjcu)x'/c‘ y (qjclj)(nj—x_/cw./) (4.15)

Xjeli

1

J

-

J

Il
—

Here, gje;j = (1 — pjej) and p = (piey1,..., Prep) 1s a vector of the k total misclassification
probabilities from the classification system.

Recall A is the joint multinomial sample space. Let the reduced sample space, 8, be the joint
binomial sample space that is the set of 1 X k sized vectors where B = {x = (xjc|1, ..., Xpep) : Xje|j €
Z*,xj|j < nj} . Then the sample space for ¥ = BCis Y = y:y= i:%tj él %_",x € B} . Therefore,
the pmf of ¥ with respect to the binomial probabilities p = (piej1, . .., prejk) can be written in terms

of the joint binomial distribution as

froIp)=PY =y|p)

= D &P (4.16)

where fx(x | p) is defined in Equation 4.15. The last line in Equation 4.16 is a summation because
it is possible to have more than one x € B that results in ¥ = y (these are ties in the ordered sample
space). For example, if k = 3 and each n; = 2, an observed BC = 0.5 will occur if there is
one misclassification out of the total six observations. There are three ways of observing only one
misclassification from this experiment, resulting in the ties in the sample space for ¥ = y . These

ties are shown in Table 4.3.

Using Equation 4.16, the CDF of Y with respect to p = (pie1, .. ., Pkok) 1S

Y Y
FyGIp) =) frltIp) =) > fxx|p) 4.17)
=0 t=0 xeB
Y=t
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Table 4.3: Ties in the joint binomial sample space for 3 classes, nj = 2, and BC = 0.5 . Each row

represents an element from the joint binomial experiments.

Class 1 (chu) Class 2 (X2c|2) Class 3 (X30|3) EE‘

0 0 1 0.5
0 1 0 0.5
1 0 0 0.5

For each fixed BC, there exists infinite p = (piey1, . .., piek) such that p’1 = BC (where lisak x 1
sized vector of ones), resulting in different values of Fy(y | p) for a given BC and observed y = BC
(except for the trivial cases where BC = 0 or BC = k). This makes finding a unique solution for the
fiducial bounds on BC, given in Equations 4.5 and 4.6, impossible. To demonstrate multiple values
of Fy(y | p) for each fixed BC, an example where y = 0.5 (left) and y = 1 (right) is shown in Figure
4.1. This example plots Fy(y | p) (Equation 4.17, plotted with black dots) against BC with multiple
p (p’1 = BC). Therefore, define F },(y | BC) to be the maximum value of Fy(y | p) for each fixed
BC =p'land F 2(y | BC) to be the minimum value of Fy(y | p) for each fixed BC = p’1 . Then
these two functions are one-to-one and onto from BC to the Fy(y | p) space, and unique solutions
for the fiducial bounds can be found. These two new functions are shown in Figure 4.1 where the
blue line is F }(y | BC) and the red line is F %(y | BC) . These functions can be expressed using

Equation 4.17 as

Fy(v| BC) = max Zfo(x P (4.18)
pgcé;;gc <y 38
Fyy|BC)= min | 3 f(x|p) (4.19)
p:p’ 1=BC t<) xeB
BCeBC Y=t
where BC is the BC sample space such that BC = {BC : BC = p'1,p = (pie|1, . - - » Prep)» piejj €

[0, 17} .
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Figure 4.1: Example of Fy(y | p) vs BC for an observed y = 0.5 (left) and y = 1 (right).

Combining Equations 4.18 and 4.19 with Equations 4.5 and 4.6, the lower (BC) and upper

(BCy) bounds for the (1 — @)100% fiducial interval for BC from an observed statistic y are:

a
BCp =sup<BC € BC such that 1 — min ixX|p|< = 4.20)
p:p’1=BC gé 2
< xe
BCy =inf{BC € BCsuchthat _max |3 f(x|p)| <= 4.21)
pp’ 1=BC | £ L 2
y=t

where y* is the ordered value of Y € VY directly less than y. Wheny = 0 or y = k , the lower
bound is BC;, = 0 and the upper bound is BCy = k , respectively. This is due to the fact that
Y € [0,k] when all ¢;j;p; are assumed equal to one, for i # j, making Pr(Y > 0 | BC) = 1 and
Pr(Y < k| BC) = 1. The upper and lower bounds expressed in Equations 4.20 and 4.21 may be
found by searching all p within a certain tolerance, which motivates using inequalities to meet the

minimum coverage desired. The coverage of this CI is addressed in the following theorem.
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Theorem S. The upper and lower bounds for BC given by

o
BC| = BC € BC such that 1 — mi <= 4.20
L = sup such tha p:pIPllSBC ;ZfX(le) > (4.20)
<y xez?
y:

BCy = inf { BC € BC such that max Z fo(x | p)| < g 4.21)
pp’1=BC | 4 L 2
y=t

create a (1 —a)100% fiducial interval around BC when weights on misclassification costs are equal

with a confidence coefficient of at least (1 — a)100%.

Proof. Let BC € BC ,y = BC , and P = (P11, - - - » Pref) be k joint binomial total misclassification
probabilities from a k-class classification system. Since BC = Zf;l ZIJ‘.: | Dilj » any small increase of

€ in any one p;; will result in an increase of € in BC. For the upper bound this results in,
PrY <y|BCo)< max 1) ), K(xIp)

= Pr(Y <y| BCy) < % (4.22)

Now let y* be the ordered value of Y € Y directly less than y. Then for the lower bound,

Pr(Y >y |BCr)<1- min ZZfX(le)
p:pTl:BCL 1<y* xeB
BCeBC [ Y4

= Pr(Y 2 y| BC) < 5 (4.23)
The confidence coefficient for any Cl is given generally in [72] as
Pr(6p <0 <0y)=Pr(Y <y|6)—Pr(Y <y|06y) (4.24)
Therefore for the fiducial interval around BC
Pr(BCp < BC < BCy) =Pr(Y <y| BCr) - Pr(Y <y| BCyp)
=1-Pr(Y>y|BCp)—Pr(Y <y|BCy)
a «

>]—=-Z=1-
= B ) (07

= [Pr(BC € [BCL,BCyl | »] =21 -« (4.25)
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The proof for Theorem 5 does not depend on the sample size used to develop the fiducial
interval. Therefore, the minimum desired coverage of (1 — a)100% will be met for any sample size,
making this method appropriate for small samples where approximate methods fail to achieve the
necessary coverage. Also, this method relies on ordering the sample space of the & joint independent
binomial distributions. This sample space becomes large as k and each n; increase, making this
method, in addition to being suitable, more practical for small samples.

4.2.2 Bayes Cost with Unequal Weights.

When all ¢;;p; are not equal, for i # j, the method for finding the fiducial interval around BC
becomes more involved compared to when all multipliers are equal. First, the outcomes from the
classification system can no longer be reduced to binomial random variables. BC is more generally

defined in this scenario as,

BC = Z Z ciipipij (4.26)

i=1 j=

i#j
where each p;; is the probability of classifying an observation from class j as class i , p; is the
prevalence of class j , and c;); is the cost associated with classifying class jasclassi (j=1,...,k

and i = 1,...,k), and the minimization is excluded because it is assumed the classification system

is applied at its optimal settings. The statistic used to estimate BC is ¥ = BC,
k& y
l
Y = Z > cipi— (4.27)
=1 J:1
i#j

Because each misclassification with respect to truth must be considered uniquely (for example,
X1 vs X3)1), the k% random variables X = (X1, X1, -+ - » Xi—1jk» Xix) must be modeled with the

multinomial distribution’

k
AxIp =] [ A
j=1

k k 'pilj
:l—[ ﬂn,m (4.8)

3To reduce computation time when searching for the lower and upper CI bounds on BC, if any of the k classes have
equal weights on the class misclassifications, this class’s total misclassification may be modeled as binomial, and the
binomial pmf may be used for that specific fx;(x;) .
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Here X = (X111, X211, -+ - » Xi—1j> Xae) and p € S = {p = (p1,. .., Px) : Pk = (P1)j>---» Puj)s Pitj = 0,
and Zf.‘zl pij = 1} . Again let A be the joint multinomial sample space defined in Section
4.2.1. Similar to the method in Section 4.2.1, the CDF of Y with respect to the multinomial
misclassification probabilities can be written as

Fy(y|p) = Z Frlt1p) = Z > x| p) (4.28)

t=0 xeA
Y=t

where fx(x | p) is defined in Equation4.8 and Y ={y :y = 12 21 CiliPjm, Hxe A .

When all ¢;jjp; are not equal, for i # j, BC is no lolng:;]cjleﬁned s1mply as the sum of the
misclassification probabilities. Therefore, any small increase of € in any one p;; will not necessarily
result in an increase of € in BC. It is clear that when the weights are different, a small increase in any
one p;; will have a different impact on BC depending on the specific misclassification probability’s
cost and prevalence. Therefore if F) yO | BC) and F? 7y | BC) are defined as they were for equal
weights in Equations 4.18 and 4.19 in Section 4.2.1, the coverage probability of the CI will not
be guaranteed for unequal costs of misclassification. Instead, a small adjustment is made to these

definitions to ensure coverage for CI around BC with unequal costs or prevalences meets the desired

level of 1 — a. Define two step functions,

F3(y| BCy) = Fl(y| BO)| = 4.2
YO 1BCo) = max |1 BO)| = max § max ;éfx<x|p> (4.29)
BCeBC
F(y| BCy) = 1 - F(y|BC)| = - 430
Ho1BCL = max [1- Fj 1 BO] = max 1= min ;;ﬂfx(xm) (4.30)
BCEBC

where ¢ is a vector of the constant multipliers to be placed on each misclassification probability
(c = (cr,...,¢cx) , where ¢j = (c1jjpj,-..,cxpj) > and ¢j;p; € R). A plot of Fll,(y | BC) ,
1-F 2()) | BC), F3 y | BC) , and F? vy | BC) is presented in Figure 4.2 for an example scenario

where BC = 0.99 when ni=3,n=5,n3=06,and Cost = [?é ] (all p; are assumed equal to
).

wl—
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Figure 4.2: Example of F;(y | BCy) and F‘)‘,(y | BCp) plotted vs BC for an observed BC = 0.98889
whenn = 3,1 =5,n3 =6, and Cost = [%’éé] The values for Fi(y | BC) and 1~ F2(y | BC) are
plotted with the decreasing and increasing black dots, respectively. Then the values for F' ;(y | BCy)
are plotted with the blue solid line and for F ‘;(y | BCp) with the red dashed line. The black horizontal

line is drawn at % = 0.025.

The (1 -a)100% fiducial interval for BC from an observed statistic y is the BCy and BCy given

by:
BC, =sup{BC € BCsuchthat max |> > f(x|p)|< <2 4.31)
p:p’ c<BC 2
>y xXeA
y=t
BCy = inf{BC € BCsuchthat max |3 f(x|p)|< > 4.32)
pple2BC | £ £ 2

y=t
and BC is the parameter space for BC with unequal weights where 8C = {BC : BC = p’¢,c =
(€1,...,¢k), ¢ = (c1;pj,--..cxjp)), and ¢;jpj € R*,p € S} . Wheny = 0 or y = sup{Y}, the lower
bound is BC;, = 0 and the upper bound is BCy = sup{BC} , respectively. This is due to the fact

that Y € [0, sup{Y}] when all ¢;;p; are not equal, for i # j, and all ¢;;p; are greater than or equal
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to zero, making Pr(Y > 0| BC) = 1 and Pr(Y < sup{Y} | BC) = 1 . The lower and upper bounds
given in Equations 4.31 and 4.32 may be found by searching all p within a certain tolerance, which
is why they are solved using inequalities to meet the desired minimum coverage. The coverage of

this CI is addressed in the following theorem and proof.

Theorem 6. The upper and lower bounds for BC given by

BC. = sup{BC € BCsuchthat _max |3 fx(x|p)|< 5 4.31)
p:p’ c<BC >y xeA 2
y:t
BCy = inf{ BC € BCsuchthat max |3 fx(x|p)| <5 (4.32)
pip’ e2BC | £ 2
=

create a (1 — @)100% fiducial interval around BC when weights on misclassification rates are not

equal with a confidence coefficient of at least (1 — @)100%.

Proof. Let BC € BC ,y = BC , p € S be the k joint multinomial probabilities from a k-

class classification system, and ¢ = (€1,...,¢k),¢j = (C1;pj,..-,CxjPj)» and c;;p; € R*. Also,
ko k
BC = Y 3 cijpjpij- Forthe upper bound this results in,
i=1,i#j j=1

Pr(Y <y| BCy) £ max max Z Z x| p)

BC>BCy p:p’ e=BC

Beese | VA
= Pr(Y <y|BCy) < % (4.33)
Now let y* be the ordered value of Y € Y directly less than y. Then for the lower bound,
Pr(Y >y|BCr) < max 41— min X
(Y2y|BC) < max {1- min ;éfx< P
Bcesc |V N
= Pr(Y 2 y| BC) < 5 (4.34)
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The confidence coefficient for the fiducial interval around any BC is

Pr(BCy < BC < BCy) = Pr(Y <y| BCr) - Pr(Y <y| BCy)

=1-Pr(Y > y| BC) - Pr(Y < y| BCy)

[04 a
S [
Z 2 ) (07

= [Pr(BC € [BCL,BCyl | Y)] 21 —a (4.35)

Once again, the proof for Theorem 6 does not depend on the sample size used to develop the
fiducial interval, and therefore the minimum desired coverage of (1 — @)100% will be met for any

sample size. Also, using the definition of the confidence coefficient,
Pr(BCp < BC < BCy)=Pr(Y <y|BCr)— Pr(Y <y| BCy) (4.36)

the confidence coefficient for this CI for any BC = p’1 can be calculated. However, the specific p
must be known in order to determine the probability of observing each X in the A sample space.
For this reason, the confidence coefficient can be calculated for a specific set of misclassification
probabilities for each class, but not explicitly for a given BC, because there are infinite p that could
result in each BC (except the trivial cases where BC = 0 or BC = sup{BC}).

4.2.3 Fiducial Interval around Bayes Cost Algorithm.

A general procedure is presented for finding the fiducial interval around BC in Section
4.2.3.1. A simplified procedure is presented in Section 4.2.3.2 for scenarios where the weights
on misclassiifcation outcomes (c;;p;) and all class sample sizes (n;) are equal. If BC = 0 or
BC = sup{Y} , the lower bound is O or the upper bound is sup{BC} , respectively. For such a case,
the algorithm should be used to find the remaining upper or lower bound only.

4.2.3.1 General Case.

The following is an outline of steps to compute the proposed fiducial interval for k classes, an

observed y = BC , and classification system with either equal or unequal weights (explained with

options for equal [unequal] weights throughout).
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1. Create the joint binomial [multinomial] sample space, B [A] , for the k independent

binomial [multinomial] distributions from each class for equal [unequal] weights (this
. K K n;+ k-1
sample space will have [1,_,(n; + 1) [T}, elements).
nj
. ko k i
2. Order the sample space, B [A] , by each element’s resultingy = > > c;jjp jnlj’ .
i=1i#j j=1

3. Create the joint binomial [multinomial] parameter space, p = (pio1, ..., Pkcjk)
[p = (P1,...,PK)] , to search for BC; and BCy. This parameter space is infinite,
therefore the search for the upper and lower bounds on BC will only consider all
p generated by a specified step or precision, ¢ . (It is recommended to start with a
larger 0 , such as ¢ = 0.2 and consider smaller 6 while narrowing in on the solution to
conserve code run time.)

4. For each element of the parameter space created in Step 3, apply Equation 4.16 [4.8]

and sum and store the resulting fx(x | p) from all elements of the B [(A] sample space

whose corresponding y is less than or equal to BC.

ko k
5. Calculate BC = ZI;':1 Pjej [BC = . 2 ciyjpjpi,] for each element in the joint
i=li#j j=1

parameter space created in Step 3.
6. For each fixed BC resulting from the parameter space found in Step 5, determine
and store the maximum value of the sum in Step 4 (this gives F }(y | BC)).

6a. For unequal weights only, create the step function in Equation 4.29. This is
done by determining the maximum value from Step 6 for all BC € BC values greater
than or equal to each specific BC value. For each BC value this gives F f,(y | BC) .
7. The upper bound (BCy) is determined as the smallest BC whose maximum value
from Step 6 [6a] is < «/2.
8. For the lower bound, repeat Steps 4-6, however, instead of summing the elements
of the binomial [multinomial] sample space where y < BC , sum the elements for
which y > BC . Then, for each BC from the binomial [multinomial] parameter space,
determine the maximum value resulting from this sum which gives 1 — F %(y | BC) .

8a. For unequal weights only, the maximum value of 1 — F Iz/(y | BC) for all
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BC € BC less than or equal to each fixed BC value is found which gives F ;‘,(y | BC)
(Equation 4.30).
9. The lower bound (BCy) is determined as the largest BC where 1 — F %(y | BC)
[F3(y | BO)lis < a/2.
10. Improve the precision of the solution by repeating Steps 3-9 iteratively, using
parameter spaces with smaller § values. Before applying Steps 4-9 reduce the joint
binomial [multinomial] parameter space to be searched by only considering elements
resulting in BC values which are +2¢6 from the previous BC; or BCy for finding the
lower or upper bound, respectively.

4.2.3.2 Special Case: Equal Sample Sizes and Weights.

When sample sizes (n) and all weights (c;;p;) on misclassification outcomes within the classes
are equal, the previous steps may be used, or more efficiently, the following may be used. For this
special case, the fiducial interval around BC reduces to a multiple of the Clopper-Pearson CI around
a binomial probability of success (where a success is defined as an incorrect classification). This
is demonstrated WLOG assuming an equal weight of one for all misclassification probabilities.
First, it is possible to determine the total misclassification probability from the entire classification
system as ppc = w = % . Let the total number of misclassifications from the classification

system be the binomial random variable X = Xj¢;; + -+ + Xjeir . Then the binomial probability

ch” +"'+Xk°\k

for the total misclassification of the system is estimated by p,,. = =<

= BC | which
can be written in terms of BC due to the equal sample size and weights in each class (n = n;).
Therefore, using the (1—a)100% Clopper-Pearson fiducial interval constructed around p,,,. such that
Pme € [Pme.L> Pmev] > the (1 — @)100% fiducial interval around BC is BC € [k X pper, kK X pmev] =
[BCy, BCy] . From this result, the fiducial interval for BC is easily computed as a multiple of the

closed form solution to the Clopper-Pearson CI as

-1
N —
1+ al (4.37)
(x + DF 2 1) 20N-x),0/2

N-x+1 -1
kx |1+ al ] < BC <kx
XF2x 2(N-x+1),1-a/2

where x is the total number of incorrect classifications observed for the entire sample from the

classification system, F represents the F distribution, and N = k X n [12].
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4.2.4 Equivalence for the Youden Index.

The fiducial interval around BC when all ¢;;p; are equal, for i # j, can be used equivalently
for any k-class J. Because the outcomes from each class are modeled as binomial random
variables in this framework, let the correct classifications from each class (Xj;) be considered a
success instead of the misclassifications (Xje|;). Then, the correct classification probability space

(p = (p1)15 - - - » Pri)) will be searched for the upper and lower bounds. Now let W = 7 . Then
kK k X;;
W= - 4.38
P @

where the maximization is excluded because it is assumed the classifier is applied at its optimal

settings. The (1 — @)100% upper and lower fiducial bounds for J from an observed statistic y are:

Jo=supiJeJsuchthatl— min |3 f(x|p)|< s (4.39)
pp'1=J t<w* xeB 2
T ow=r
a
Jy =inf{J € 9 such that max AKxIpl< =< (4.40)
ppi1=J tszwé 2
w=t

where J is the J sample space such that = {J : J = pTl,p = (p1s---»pw)spitj € (0,11},

$ is the joint binomial sample space which is the set of 1 X k sized vectors such that 8 = {x =
ko k

(X115 -+ XH) © Xjjj € Z*,xﬂj <nif, W=fw:w= 3 3 %’,X € B} and w* is the ordered
i=li=j j=1

value of W € ‘W directly less than w. When w = 0 or w = k , the lower bound is J; = 0 and the

upper bound is Jy = k , respectively.

4.3 Bootstrap Methods

Bootstrap methods presented in Section 3.4 may be similarly applied here. For comparison to
the newly developed nonparametric CI around BC, the BCa bootstrap CI will be used. The BCa
bootstrap Cl is a practical choice because this CI method is appropriate when the distribution of the
parameter is skewed [11]. Recall that since BC is constructed by the minimization of multinomial
probabilities, it is expected that this distribution may be skewed. This was observed in the results
of the simulation in Section 3.5. The BCa CI also allows the skewness of the distribution to change

with the varying parameter, which also might be expected for BC based on the results of Section 3.5
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(Figure 3.1) [11]. Finally, the BCa bootstrap CI is used for nonparametric CI around BC because
this CI method was shown to perform best for CI around BC in Chapter 3 (with BC estimated

parametrically) and for CI around J in [56] (with J estimated empirically).

4.4 Simulation Results

A simulation study was conducted to demonstrate the performance of the proposed fiducial
interval around BC. This method is ideal for small sample sizes, and therefore the simulations are
run with various equal and unequal small sample size scenarios for both the two- and three-class
BC. For clarity in this section, the two-class BC is denoted BC, and the three-class BC denoted

BC3. These are defined as

BCy = copnpipan + cippapip (4.41)
and
3 3
BC3 = ) > cipipij (4.42)
e

Multiple values of BC, and BC3 are considered in order to demonstrate performance of the fiducial
interval around BC under differing classification system performance. In addition to varying
classification performance scenarios, both equal and unequal weights are considered. The unequal

weights scenarios utilize the two unequal cost structures from the simulation in Chapter 3. Recall

clr i 13

012 025
that these cost structures are Cost; = (101 | and Cost, = [1 0 3] where Cost = [Czu 2 Czn] LAl
210 130 C3|1 C3]2 €313

prevalences are assumed equal (p; = %).

Two distributional scenarios are considered. First, no distributional assumptions about the
classification system are made. Then, comparisons are made against other CI techniques when the
single feature used for classification is independently and normally distributed for each class. Each
distributional scenario is discussed separately. Absolute bias of BC is also presented. All simulation
scenarios used 3000 simulation runs in R and a = 0.05 [52].

4.4.1 Egqual Costs.

A cost structure is assumed where c;jjp; = 1, for i # j . Under this framework, BC> € [0, 2]
and BC3 € [0,3], where BC, = 1 and BC3 = 1.5 reflect chance classification. The values of

BC chosen to reflect a range of classification accuracy are BC, = (0.6,0.4,0.2,0.1) and BC3 =
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(0.9,0.6,0.3,0.15), such that each BC5 value has the same average misclassification probability as
a corresponding BC, value.
4.4.1.1 No Distributional Assumptions on the System.

Making no assumptions about the classification system’s structure, multinomial random
variables are randomly generated representing outcomes from a classification system’s resulting
contingency table (recall Tables 2.3 and 2.4). The misclassification probabilities are assumed to
be equally distributed between all classes for each BC, or BCs; value. The fiducial interval is
constructed around BC separately for all 3000 simulation runs and the coverage probability and
average length of the intervals calculated. Absolute bias of the estimated BC is also calculated.

The results are presented in Table 4.4. For all sample size and BC scenarios, the intervals
perform well with coverage probabilities of at least 95%. Also, the average length of the interval
decreases as the total sample size increases and as the classification performance improves (smaller
BC). The absolute bias in the empirically estimated BC is higher for larger BC values and decreases
as n; increases, mimicking the trend of interval length. Absolute bias is higher for BC3 (absolute

bias € [0.056, 0.292]) than for BC; (absolute bias € [0.044, 0.225]) for equivalent n; .

4.4.1.2 Normally Distributed Feature.

To compare the performance of the proposed fiducial interval to other available CI methods for
BC, a classification system with a single feature that is independently and normally distributed for
each class and a single threshold between each class (two thresholds for BC3) is assumed. For all
scenarios, the variance for each class is assumed equal to one and the means are varied to achieve
the desired BC, or BC3 value. These normal distribution parameters are listed in Table 4.5. The
sample sizes considered are held consistent with those in Section 4.4.1.1.

For both the two- and three-class scenarios, three methods in addition to the fiducial interval
are compared. The first method is a nonparametric BCa bootstrap CI. In [56], the BCa bootstrap CI
is shown to have good coverage around J, for n; > 50 when J; is estimated empirically. However,
in [36], the BCa bootstrap is shown to perform well for slightly smaller sample sizes when J3 is
estimated parametrically (defining J as a function of the normal distribution parameters from the

features). Recall, when all ¢;;p; are equal, for i # j,J and BC may be used equivalently where
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Table 4.4: Simulation coverage probability and length for 95% fiducial intervals around BC for two
and three classes when all ¢;;p; are equal, for i # j, making no distributional assumptions on the

classification system

BC, = 0.6 0.4 0.2 0.1
#of Classes n; np Cov Len Cov Len Cov Len Cov Len
k=2 5 5 99.03 1.12 99.57 1.01 99.00 0.85 98.70 0.74
6 9 96.00 0.92 9747 0.82 9893 0.68 9827 0.58
10 10 97.53 0.83 98.10 0.73 99.00 0.58 9850 048
12 18 95.60 0.67 96.00 0.60 9877 047 99.33 0.38
20 20 96.37 059 9727 052 97.03 041 98.70 0.31
22 28 9547 0.51 9590 046 96.33 0.35 9823 0.27
30 30 96.70 048 96,50 043 9727 0.33 99.10 0.25
BCj3 = 0.9 0.6 0.3 0.15
#of Classes n; np n3 Cov Len Cov Len Cov Len Cov Len

k=3 5 5 5 9780 1.41 98.00 1.26 9873 1.02 9940 0.85
4 6 10 96.53 125 9827 1.12 9827 091 9897 0.78
10 10 10 96.97 1.02 9793 091 99.17 0.71 98.53 0.56
& 12 20 95.67 091 96.77 0.82 98.63 0.64 99.00 0.52
20 20 20 96.60 0.72 96.27 0.64 97.03 049 9897 0.37
24 16 30 95.17 0.67 9537 0.59 98.03 047 9923 0.36
30 30 30 96.17 0.59 9647 0.52 96.13 040 97.53 0.30

Cov - coverage probability; Len - length

BC> =1~-Jyand BC3 = 3 — J3 (where J, = pij1 + pop — 1 and J3 = pijp + pop + p3p). Therefore,
two BCa bootstrap Cls are constructed around both BC, and BC3, one utilizing an empirical and
the other a parametric estimation of BC as described in [56] and [36] (denoted BCag and BCap,
respectively). For both BCa Cls, 999 nonparametric bootstrap samples are used. In addition, the
delta method CI (see Section 3.2) and the GCI (see Section 3.3) are also used for comparison to
the fiducial interval. For the implementation of these Cls, the classifier is applied to the random
samples from the normal distributions to construct the resulting contingency table (in the spirit of

Table 2.4), and then the appropriate CI method is applied.

One additional method is also considered for comparisons of CIs around BC,. Because this

method was developed for the two-class framework only, it is not used in the simulation for BCs.
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Table 4.5: Normal distribution parameters used in fiducial interval simulation with each o; = 1

#of Classes BC u us

k=2 0.6 0 1.049 -
0.4 0 1.683 -
0.2 0 2563 -
0.1 0 3290 -

k=3 09 -1.0 0 2.148
0.6 -15 0 2.902
03 -25 0 3.405
0.15 -3.6 0 3.523

This final method is a nonparametric method which assumes there is a single threshold between
the two classes, but makes no assumptions about the distribution of the feature. It is based on the
Agrestti Coull CI for a binomial proportion and utilizes a bootstrap to determine the CI bounds
(denoted NP) [79]. This method uses an estimation of J (easily modified for BC) given in Equation
2.33. Once again, since all weights are fixed to be equal, this CI method may be used equivalently for
BC,. The coverage and length of all CIs around BC, and BC3 is determined by the 3000 simulation
runs for the normally distributed feature. All simulations are run in R and the boot package is used
for all bootstrapped CIs [10, 15, 52].

The results are presented in Table 4.6 for two classes and Table 4.7 for three classes (due to
the poor performance of the NP CI, these results are in the Appendix, Section B.2). The proposed
fiducial method meets or exceeds the desired coverage probability of 95% for all sample size and
BC values considered. Also, similar to the simulation scenario which made no assumptions about
the underlying distributions, as the total sample size increases and BC value decreases, the length
of the fiducial interval decreases. Since lower BC values indicate a more accurate classification

system, the proposed CI will perform best (when also considering length) for accurate systems.
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Table 4.6: Simulation coverage probability and length for multiple methods” 95% CI around BC,

for two classes with a normally distributed feature when all ¢;;p; are equal, for i # j .

Fiducial Delta BCap BCag GCI

ni ny BC, Cov Len Cov Len Cov Len Cov Len Cov Len

5 5 06 1000 1.10 86.07 0.80 86.10 0.67 7190 132 9693 0.77
04 9987 098 8517 0.72 83.67 0.62 8097 142 9753 0.75
0.2 9890 0.80 82.00 053 7893 043 6430 1.16 9837 0.62
0.1 98.80 0.70 7837 037 7577 028 21.80 0.73 98.60 0.50

6 9 06 9657 091 90.03 071 91.07 0.63 8830 091 96.53 0.67
04 9880 0.81 88.80 0.63 89.23 0.59 88.07 093 97.07 0.64
02 9927 0.65 8570 046 8547 042 7740 0.73 97.80 0.51
0.1 99.00 0.56 8247 031 8333 028 41.17 046 98.00 0.39

10 10 0.6 98.60 0.82 91.73 0.61 9333 0.57 8426 0.76 96.06 0.59
04 97.03 0.72 9033 054 9223 0.53 9020 0.76 96.10 0.55
02 9897 057 8750 039 89.60 0.38 88.07 0.57 96.60 0.42
0.1 98.80 046 8597 026 8797 026 3720 034 96.63 0.31

12 18 0.6 96.83 0.67 92.63 052 93.63 0.50 9233 0.67 9540 0.1
04 96.10 059 9157 046 93.17 046 94.07 0.64 9537 0.46
0.2 99.10 046 8940 033 9193 033 91.87 052 96.00 0.35
0.1 99.60 036 8737 022 9097 023 84.03 0.34 96.13 0.25

20 20 0.6 9563 059 92.13 045 9347 044 89.63 0.59 9433 0.44
04 9747 052 91.67 039 9327 039 9433 0.55 9457 0.39
02 96.17 040 9037 029 9233 029 94.07 044 9463 0.29
0.1 99.00 030 88.97 0.19 91.73 020 78.10 031 9476 0.21

22 28 0.6 9587 051 9290 040 93.80 040 9327 0.53 94.80 0.40
04 9600 045 9230 036 93.60 036 9520 048 95.07 0.36
02 9560 035 9120 026 9323 026 9443 039 9543 0.26
0.1 9857 026 8923 0.17 9277 0.18 9137 029 9563 0.18

30 30 0.6 97.13 048 9437 037 9493 037 9057 049 9570 0.37
04 97.00 043 9393 032 9450 033 9483 044 9580 0.32
0.2 9737 033 9333 024 9347 024 9593 036 9547 0.24
0.1 9927 024 91.70 0.16 93.12 0.16 84.87 0.27 9563 0.17

Cov - coverage probability; Len - length; BCap - bias corrected and accelerated/parametric estimate

BCag - bias corrected and accelerated/empirical estimate; GCI - generalized confidence interval
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Table 4.7: Simulation coverage probability and length for multiple methods’ 95% CI around BC3

for three classes with a normally distributed feature when all ¢; ;p; are equal, fori # j .

Fiducial Delta BCap BCag GCI
ng np n3 BCz3 Cov Len Cov Len Cov Len Cov Len Cov Len
5 5 5 21 9850 1.37 8997 091 80.80 0.69 74.03 1.00 97.53 0.89

24 9943 121 8833 0.85 8223 0.66 8453 0.93 96.80 0.87
27 9927 094 8637 0.67 79.17 049 6280 0.66 95.00 0.80
2.85 99.63 0.78 84.63 049 77.03 034 29.7 035 93.77 0.69
4 6 10 2.1 9680 121 8733 0.87 7873 0.66 8247 1.07 97.40 0.85
24 9930 1.07 8733 0.82 80.87 0.63 8497 099 97.70 0.84
27 9877 0.86 8470 0.64 78.67 047 7450 0.70 97.30 0.75
2.85 9940 0.74 8423 044 79.67 033 5327 040 9557 0.63
10 10 10 2.1 98.60 1.01 9247 0.68 89.73 0.60 89.87 092 96.33 0.66
24 9823 0.89 9233 0.63 91.00 0.57 92.60 0.86 96.30 0.63
27 9940 0.68 9133 049 9897 044 90.97 0.68 9597 0.3
2.85 98.70 0.52 89.77 0.35 89.47 0.32 7453 043 9533 042
8 12 20 21 96.63 090 9127 0.64 8797 057 8920 0.88 96.13 0.62
24 9520 0.80 91.23 0.61 89.57 0.55 91.80 0.84 9647 0.61
2.7 98.83 0.63 90.00 047 89.03 042 90.73 0.67 96.60 0.51
2.85 9947 0.50 89.50 0.32 88.73 029 86.67 043 95.03 0.38
20 20 20 2.1 9780 0.72 9343 049 9220 046 9233 0.69 9557 048
24 97.13 0.63 9280 045 9293 043 9393 0.64 9557 045
27 9680 0.48 92.03 0.35 92.03 0.34 9450 0.52 95.03 0.37
2.85 99.20 036 91.10 024 91.50 0.24 9273 038 94.03 0.27
24 16 30 2.1 9553 0.66 9283 047 91.17 044 9277 0.68 9593 045
24 9563 059 9287 045 91.87 043 9493 0.63 9510 0.45
27 9727 046 9233 035 91.10 0.33 9443 0.51 94.60 0.37
2.85 9933 035 9093 0.25 91.13 0.23 91.63 038 9357 0.28
30 30 30 2.1 9737 059 9433 040 92.67 039 9493 0.57 9457 040
24 9743 0.52 9387 0.37 9347 036 947 0.52 94.67 0.37
27 97.00 040 9373 0.29 93.13 028 9500 042 9453 0.30
2.85 9777 0.29 9333 020 9327 020 90.97 0.32 9433 0.22

Cov - coverage probability; Len - length; BCap - bias corrected and accelerated/parametric estimate

BCag - bias corrected and accelerated/empirical estimate; GCI - generalized confidence interval
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The only other CI that approaches the desired coverage probability is the GCI. The GCI has
lengths that are on average 25% shorter than the fiducial intervals. However, the GCI is only
appropriate for a classification system with a single feature that is independently and normally
distributed for each class. The GCI always outperforms the delta method CI in coverage, which is
also constructed on the assumption of a normally distributed feature (this was already observed in
Section 3.5 for the small sample size scenario).

The NP CI performs poorly with respect to coverage for highly accurate classifiers (BC = 0.1)
and for all BC values for n; < 20 (see Appendix B.2). Therefore, this CI is not appropriate
for a nonparametric small sample CI around BC. Both bootstrap CIs (with BC estimated either
parametrically or empirically) perform poorly for small sample size scenarios (with the BCap CI
outperforming the BCag CI). In general, the bootstrap BCa CI with a parametric estimate of BC
performs very similar to the delta method CI in both length and coverage, as is also seen in Section
3.5. The BCag CI performs fairly well in coverage for n; > 20 , although the coverage drops for
BC = 0.1. Also, as the coverage of the BCag CI gets close to the desired level (= 90 — 95%),
this CI’s length becomes very similar to, and usually slightly worse than, the length of the fiducial
interval. This suggests that for a nonparametric method that meets the desired coverage, it may not
be possible to achieve shorter lengths than that of the fiducial interval.

The parametric estimate of BC (used for the delta, generalized, and BCap ClIs) has the lowest
absolute bias (absolute bias € [0.001, 0.209]), which is expected because this estimate is based on
the assumptions used for the simulation. The empirically estimated BC (used for the BCag and
fiducial intervals) has larger bias (absolute bias € [0.007,0.278]) than the parametric estimates but
similar bias as seen in the simulation that used multinomial random variables. Finally, the bias
for the estimate of BC used for the NP CI increases significantly as BC, decreases (absolute bias
€ [0.066, 0.356]). This trend in bias was also noted in [79] for J. This increase in bias for decreased
BC, may contribute to the decreased coverage for this method at lower BC values.

4.4.2 Unequal Costs.

To ensure performance of the fiducial CI is not degraded when the costs of misclassification are

not equal, two additional cost scenarios (the same cost structures considered for the parametric Cls
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in Section 3.5) are considered for the three-class BC. In Section 3.5, the different cost structures do
not have an impact on the CI performance for a normally distributed feature. For this reason the cost
structure performance is demonstrated with the multinomial distribution only, as the performance
with a normally distributed feature is not expected to differ from what is presented in Tables 4.6 and
4.7.

Additionally, only sample sizes up to n; = 20 are considered as a result of intensive com-
putational time when using the multinomial distributions. The same average total misclassification
probabilities considered for the equal cost scenarios are used for this simulation, with the error prob-
abilities being evenly distributed throughout the classes. This results in different BC3 values, where
BC3 cosr;, = (0.4,0.27,0.13,0.07) and BC3 o5, = (0.75,0.5,0.25,0.125). The coverage probabil-
ity and length of the CIs are presented in Table 4.8. As expected, the CI is achieving a coverage
probability of at least 1 — @. Notably, the CI for the unequal cost scenarios are more conservative
with respect to coverage than the equal cost scenarios due to the step function required for find-
ing the bounds. Finally, bias of the estimated BC is similar to the previous sections (absolute bias

€ [0.026, 0.137] for Cost; and absolute bias € [0.053,0.274] for Costy).

4.5 Comparisons to Multinomial Methods

One simple solution for a CI around BC is the construction of simultaneous Cls around the
multinomial probabilities resulting from the classification system, and then summing these bounds
to calculate upper and lower bounds around BC:

k k
BCL= )" puL (4.43)

i=1 j=1
1#]

k k
BCy =" pijw (4.44)

i=1 j=1
1#]

where [p;j ., piju]is the (1 —@)100% CI around p;; found using a simultaneous CI method for the
j™ class’ multinomial probabilities. With k classes, k sets of simultaneous CIs will be needed which

may require an adjustment for multiple comparisons to construct the (1 — @)100% CI around BC.
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Table 4.8: Simulation coverage probability for 95% fiducial intervals around BC for three classes

and two different cost structures making no assumptions on the classification system.

BCs3 = 04 0.27 0.13 0.07
Costy np m n;3 Cov Len Cov Len Cov Len Cov Len

5 5 5 99.27 0.76 99.63 0.67 9893 0.55 9843 048
4 6 10 98.93 0.70 99.40 0.61 99.63 0.50 99.50 0.42
10 10 10 99.13 055 98.60 048 99.17 0.38 98.67 0.30
& 12 20 98.50 0.52 9893 046 99.13 0.37 99.53 0.30
20 20 20 98.90 0.40 98.63 035 99.03 0.27 99.13 0.20

BC;3 = 0.75 0.5 0.25 0.125

Costy, np np n3 Cov Len Cov Len Cov Len Cov Len

5 5 5 99.13 142 99.13 126 9830 1.06 9947 0.96
4 6 10 98.53 1.12 98.20 098 9790 0.80 98.50 0.67
10 10 10 98.30 1.06 98.70 0.92 9883 0.72 98.67 0.60
8 12 20 97.87 082 97.87 0.71 98.13 055 98.27 043
20 20 20 97.87 0.77 98.07 0.67 9887 0.51 9920 0.39

Cov - Coverage probability; Len - Length

The simultaneous CI methods for multinomial probabilities listed in Section 2.7.2.1 that may
be used for producing a CI around BC are considered in this section. In [71] the performance of
these methods is evaluated with respect to coverage probability. The Gold (1963) and Goodman
(1965) methods have a minimum possible coverage probability of zero, which is not desirable [71].
The Queensberry and Hurst, Fitzpatrick and Scott, and Sison and Glaz methods all have minimum
coverage probabilities greater than zero, although notably not greater than 1 — « [71]. The three
methods whose minimum coverage probability is greater than zero are considered for constructing
a CI around BC.

The final method considered (although it is not a simultaneous CI for multinomial proportions)
is the Clopper-Pearson CI for a binomial proportion (presented in Section 2.7.1.1). Under the
assumption that all ¢;;p; are equal, for i # j, the total misclassification probability from each class
may be modeled as a binomial proportion and therefore the Clopper-Pearson CI can be utilized.
The Clopper-Pearson CI for binomial proportions has a minimum coverage probability of at least

1-al3].
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4.5.1 Simulation Results.

A simulation was conducted to compare the performance of the Clopper-Pearson, Fitzpatrck
and Scott, Queensberry and Hurst, Sison and Glaz, Wald, and Log Wald methods when used to
construct CIs around BC (Wald and Log Wald intervals are developed for BC in the Appendix,
Section A.4). A three-class scenario with equal misclassification weights is assumed (c;jp; = 1,
i # j),and nj = 5, 10, and 30 is considered. The coverage probability and length of the intervals
over all values of BC (in increments of 0.01, allowing misclassification probabilities to be randomly
assigned within all classes for each sample and fixed BC value) are determined using 10,000
simulation runs. Although some of the methods considered in this section require the construction
of k sets of simultaneous Cls, an adjustment for multiple comparisons (such as the Bonferroni
adjustment to @) is not made since these methods’ resulting Cls around BC without an adjustment
all have coverage above 1 — a. A Bonferroni adjustment would only increase the coverage and
length of the interval, which is not desired for comparison. The results are presented in Figure 4.3,

The simultaneous CI methods do not perform well with respect to CI length (although coverage
is met) and generally are so wide that the CI would be useless. Also, as expected due to the poor
performance of the Wald CI on binomial proportions, the Wald and Log Wald methods do not meet
the desired coverage, although they have shorter lengths. The performance of the fiducial interval
is presented in Figure 4.3 for k = 3 and n; = 5,10, and 30 with the red line. Notably, the fiducial
method outperforms the simultaneous CI methods as it exceeds the desired coverage with much

shorter lengths.

Discontinuities in the plots at BC = 1.0 and BC = 2.0 occur due to a change in how the probabilities were randomly
assigned, which was necessary to ensure the BC values reached the desired levels.

81



=10

I’lj=30

1.00

85

0.

0.0

085

0.80

0.75

1.00

085

085

0.80

1.00

085

0.80

085

0.80

075

0.70

I
|
|

NN

| LAY LR A VY

N ‘

\‘ \

|

/

)

i

M‘”W Iy
j |

|

\

\

|
|

|

Mﬂ \

00

05

25

30

25
1

00

05

T
15

Bayes Cost

20

25

30

Bayes Cost
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4.6 Summary

Although Fisher’s fiducial argument was lively debated, and deemed “Fisher’s biggest
blunder” by Efron, the objections to the theory were philosophical and not based on the method’s
feasibility [18, 31, 77]. In fact, in this chapter, the fiducial interval was shown to be a very useful and
well performing tool for a CI around BC. The fiducial interval proposed in this chapter consistently
meets the desired coverage probability for various classification scenarios. Although the CI has
longer length than other intervals, when a CI under similar frameworks (empirically estimated
BCa bootstrap CI) comes close to the desired coverage, the length of the other CI is similar and
sometimes worse than that of the fiducial interval. The fiducial interval was shown to outperform
the Wald, log Wald, and all simultaneous CI methods for multinomial probabilities considered with
respect to coverage probability and length.

The fiducial interval performs well under any distributional scenario, as demonstrated in the
simulation section using classification systems with either no underlying distributions or those with
a single normally distributed feature. When the feature is normally distributed, the GCI presented
in Section 3.3 outperforms all other methods considered in length, when the coverage was met.
Coverage was met with both the GCI and fiducial methods, although the estimates of coverage
were slightly lower with the GCI. The simulation suggests that the GCI performance may drop
as class size and classification accuracy increases, in the three-class scenario. However, under the
scenarios considered in the simulation in Section 4.4.1.2 for a normally distributed feature, the GCI
is recommended. The utility of this CI is limited, however, as it is only appropriate for classification
systems known to have thresholds between a feature’s normal distributions for each class.

The fiducial interval has been developed to assure coverage is met. As such, the interval
exceeds the coverage, resulting in interval lengths which may be seen as impractical. This is
especially true for very small samples in the simulation. However, the fiducial interval is the only
method which will guarantee coverage for any nonparametric scenario and sample size, and still
may provide useful information. For instance, in the simulation where each class only has a sample
of size five, coverage is about 99% for all BC values considered. For the high BC values, the lengths

cover more than half of the possible range of BC. Yet when the BC value is low, the lengths of the
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fiducial intervals are shorter to the extent that a classification system performing better than chance
would still be determined. Therefore, even in small sample scenarios accurate systems may be
detected, suggesting usefulness in this method for, say, pilot studies of potential classifiers.

The fiducial method requires searching the parameter space incremented by a predetermined
tolerance. Given the step functions required for finding the bounds for BC when costs on
misclassifications are unequal, this tolerance should be chosen carefully. If the space is searched
too coarsely, the upper or lower bound may be found to be too small or large, respectively. This
is demonstrated for a three-class example where the second cost structure (Cost,) is used. The top
plot in Figure 4.4 is the minimum coverage at all BC values when the solution to the bounds was
found by searching the parameter space, incremented by 0.05. The bottom plot in Figure 4.4 is the
minimum coverage at all BC values when the parameter space searched was incremented by 0.01. It
is clear that for a specific scenario, the minimum coverage achieved was below the desired level of
95% when the space was searched too coarsely. This minimum coverage is improved however, for
the more finely searched interval. Therefore, although the developed fiducial interval theoretically
guarantees a coverage of (1 — @)100%, the increment used for searching the parameter space must

be chosen carefully for the practical implementation of the interval when costs are unequal.
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Figure 4.4: Minimum coverage of fiducial intervals when searching with coarser and finer

increments in probability space, 6 = 0.05 (Top) and 6 = 0.01 (Bottom)
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This chapter provides a nonparametric CI for any k-class BC which does not rely on
information about the classification system used to construct the interval. This CI may be applied
once the optimal thresholds have been selected, has the advantage of working for any classifier
and regardless of scenario, and achieves the desired coverage probability. Therefore, in situations
with small sample sizes or where the underlying distributions of the feature for each class are not
normal or unknown, this fiducial interval provides a very useful and flexible tool for quantifying the
uncertainty in BC. Finally, although this method is developed for applications with BC, it may be

used for constructing a CI around any linear combination of multinomial or binomial probabilities.
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V. Parametric Hypothesis Tests

5.1 Introduction

The methods proposed in this chapter assume a classification system with a single feature that
is independently and normally distributed for each class and a threshold between ordered classes to
distinguish any & number of classes. Under this framework, recall that BC can be written with the
normal CDF, where the minimization is left off because this is achieved by using the k — 1 optimal

thresholds (6

>
k *
) — 1
BC=ZC1|jqu)( 1 )+
=2 7

k % s

0 —p; 6 . —uj
> Ciljpj[CI)(—m_(;,ﬂJ)—CD(—m_l;, ﬂj)
;. J J

The development of two different types of hypothesis tests is considered. First, for a single

m=1,....k—1).

kz_l Hj = by
+ Ck|jqu) —O' ) (3.9)
J

=1

classification system, it may be of interest to test a one sided hypothesis on BC in order to determine
if the system performs at least as well as some pre-specified classification accuracy level (measured
by BC). For instance, one may be interested in determining if a system performs better than chance.

Lower values of BC correspond to better classification accuracy resulting in hypotheses of the form
Hy : BC > BCy vs. Hy : BC < BCy 5.1

Secondly, it may also be of interest to compare the resulting BC values from two competing
classification systems at their optimal point, in order to determine if one has superior classification
performance. This hypothesis test may be of greater interest to decision makers because it provides
information useful for choosing a classification system without having to specify a BC threshold
(BCp). It is assumed both classification systems are independent and have the same number of
classes, and the feature used for each classification system is independently and normally distributed
for each class. The two classification systems being compared will be denoted classification system
A and classification system B. Define the difference between the two BC values from these systems
as

n=BCy - BCp (5.2)
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The hypothesis to compare their performance would be of the form
Hy:n<novs. H :n>no (5.3)
This hypothesis may be written for the specific case
Hy:BCq < BCgvs. H : BCy > BCp 5.4

which is equivalent to testing at 79 = 0 (no difference between performance). Higher values of
BC indicate a classification system with poor performance and therefore the alternate hypothesis
reflects the case when classification system B performs better than classification system A.

In Section 5.2, the delta method is used for developing both types of hypothesis tests assuming
large sample sizes. In Section 5.3, both hypothesis tests are developed using a generalized
hypothesis method for any sample size. A simulation is also considered to demonstrate the
performance of the proposed hypothesis test methods (with size and power) and these results are

presented in Section 5.4. Finally, a summary of the findings is presented in Section 5.5.

5.2 Delta Method Hypothesis Tests
5.2.1 One-sided Hypothesis Test on a Single Bayes Cost Value.
Recall from Section 3.2, for a normally distributed feature, as n — oo, BC ~ N (BC, Var(ga‘))

and the variance of BC is estimated via the delta method with

k
Var (EE’) ~ Z
j=1

The partial derivatives for the three- and four-class BC are presented in Section 3.2.1 and Appendix

dBC\* __ (8BC\*
((9_,11]) Var(,uj)+(¥j) Var((rj)l (3.10)

A.3, respectively. However, for any number of classes, the partial derivatives are easily estimated
numerically with the two point central difference method (Section 3.2.3). After estimating the partial

derivatives and the variance of BC, the one sided hypothesis
Hy : BC > BCyvs. Hy : BC < BCy (5.1)

is tested by calculating a p-value from the observed sample. The p-value is developed using the

following theorem.
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Theorem 7 (Valid P-value).

Let W(X) be a test statistic such that large values of W give evidence that H; is

true. For each sample point X, define

p(x) = sup Py(W(X) =2 W(x))

Then, p(X) is a valid p-value. [12, p. 397]

Let W(X) = BB For BC = BCy , W(X) is distributed standard normal as n — oo .

Y% Var(l/i‘) '

However, large values of W(X) give evidence that H; is false. Therefore, to test the one-sided

hypothesis in Equation 5.1 with this test statistic, the p-value is determined as

p(Xx) = gug Po(W(X) < W(x))

For any arbitrary BC’ > BC , BC — BCy > BC — BC’ and

BC - B BC — BC’
plz < BEZBCo | p|, o BEZBC

) \Var(BC) B ) \/Var(BC)

Therefore, the p-value for this hypothesis test is given by

p(x) = sup Py(W(X) < W(x))

_plz< BEZBC
\ Var(EE’ )
At the « significance level, Hy is rejected for W(x) < Z, or p(x) < « .
5.2.2 One-sided Hypothesis Test on the Difference of Two Bayes Cost Values.
For testing the hypothesis

Hy:n<novs.H :n>no

&9

(5.5)

(5.6)

(5.7

5.3)



the parameter of interest, 77 , is a function of the normal distribution parameters, u;s , 0 ja , 4jB >

anda'j,B,j:I,...,k.

n ZBCA - BCB
Z ( 1A ﬂJA) izkl [ ( = i,A_ﬂ./lA) (D(g;kn:i—l,A_ﬂj,A)]
= Cl|jPj + Ci|jPj —
iPj L L i1jPj oA 3y
i#]
= Hia =6y 4 £ 015~ HjB
+ch|]pj ( oA ) Zcﬂjp]q)(o_—)
=1 A =2 B
S Op=ip ~ HiB O =ic1,8 ~ HiB
Z cijpj|® p - p
i=2 j=1 1B B
i#]
k=1
1jB =6y p
—chupj (— (5.8)
Jj=1 7B
Therefore, from the multivariate delta method (Theorem 4), 7 = g(u, o) is Asymptotic-

Normal[z, Var()] and Var(n) is estimated by

£ 10 an V2 an \2
Var(n) ~ FZI l(aﬂj,A) Var(uja) + (BO'j,A) Var(oja)
on \2 o \2
Vv i Vv i 5.9
* (aluj,B) ar(ﬂj’B) * (ao-j,B) ar(a-]’B) 62

Covariance terms are excluded due to the assumption of independence between the normal
distributions for each class and the classification systems being compared. Given that n =
BC4 — BCp and each BC value only depends on the parameters associated with the classification

system from which it were derived,

on )2 (chA )2
_ 5.10
(37j,A dyja (5.10)
and
2 2
(—5” ) :(—aBCB) (5.11)
Ovn JvB
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(where y; =pujoro;and j=1,...,k). Then Equation 5.9 may be rewritten:

2
S| e (22

0
GO'J"A

(aBCB 2 dBC
+

2
auj,B) Var(;T,-,‘B)+( o B) Var((fﬁ;)} (5.12)

B
The partial derivatives required for estimating the variance of 1 in Equation 5.12 are found using the
partial derivatives of BC. Recall these equations are presented in Section 3.2.1 for three classes, in
Appendix A.3 for four classes, or generally for any k classes with the two-point central difference

method presented in Section 3.2.3.

710
\Var(y)

W(X) give evidence that H; is true. For n = 9 , W(X) is distributed standard normal as n — oo ,

Similar to the previous section, the test statistic is W(X) = , where large values of

and the p-value for this hypothesis test is

px) = P(Z > ﬂ] (5.13)

\Var()

At the a significance level, Hy is rejected for W(x) > Z;_, or p(X) < « .

5.3 Generalized Hypothesis Tests
Let £ = (0, 6) where 6 is the parameter of interest and ¢ is a vector of nuisance parameters.
Definition 4 (Generalized Test Variable).

A random variable of the form T = T(X;X, () is said to be a generalized test variable
if it has the following three properties:

Property 1: t,,s = t(X;X, ) does not depend on unknown parameters.

Property 2: When 0 is specified, T has a probability distribution that is free of nuisance
parameters.

Property 3: For fixed x and § , Pr(T < t;0) is a monotonic function of 8 for any given
t. [73, p. 115]

If T is a generalized test variable which is stochastically decreasing in 6 , the generalized

p-value for testing Hy : 0 < 8y vs Hy : 8 > 6y can be found as [73, p. 119]

p(x) = Pr(T < tops | 0 = 6p) (5.14)
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5.3.1 One-sided Hypothesis Test on a Single Bayes Cost Value.

For testing the hypotheses of the form
Hy : BC > BCy vs. H; : BC < BCy (5.1)

the parameter of interest is the k-class BC defined in Equation 3.9, which is a function of the

nuisance parameters, ujand o, j=1,...,k . Define T = T(X;Xx, () as
T = Rgc — BC (5.15)

where Rpc was defined previously as

k
Ry — Ry,
RBC :chljqu)(—lR J)
aj

j=2
o5 R fo(T ) o e (M) 29
Cijpj - ChjPjP\ — 0% :
i=2 j=1 R‘Tj R"'j j=1 R"'j
1#]

It was shown in Section 3.3.3, that Rpc is free of unknown parameters. Also recall that the GPQs

for the optimal thresholds (Ry ) are found numerically (when all ¢;;p; are not equal, for i # j). As

seen in Section 3.3.1, for each class (indexedon j=1,...,k)
— S
Rﬂj:xj_tjﬁ (3.16)
and
(nj = Ds;
where
X;—u
ti= —— (3.18)
RV
and
(nj - 1)55
Vi= ——— (3.19)
foar

j
where #; ~ f(n;-1) , a t-distribution random variable with n; — 1 degrees of freedom, and V; ~ )(if 1

a chi-square random variable with n; — 1 degrees of freedom [12, p. 218, 223]. The observed

value of T, where #,,; = T(X,S) , is evaluated by using x; and S ; in Equations 3.18 and 3.19 and
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then substituting Equations 3.18 and 3.19 into Equations 3.16 and 3.17, respectively. This results
in Rﬂj(i, S) = uj, R(,j(i, S) = o, and the numerically estimated Rg; (X,S) = &, . Substituting

R, (X,S) = uj, Ry, (X,S) = 0, and Rg; (X, S) = 6, into Equation 3.25 and Equation 5.15 results in

k i
07 —u;i
tobs = § 01|ij®( 10, j)
; j

k-1 k 5 * k-1 *
Opi = M) Opmict —Hi Hj~= Y%
+ CiljPj [(D(L)—CD(— + ckljqu) ———|-BC
i=2 ]Z' 7 7 ,Z‘ 0
1#]
=BC - BC
=0 (5.16)

Therefore, it is clear that Property 1 from Definition 4 is met since #,5s does not depend on unknown
parameters. Property 2 of Definition 4 is met, because Rpc is free of unknown parameters which
implies that when BC is specified, T does not depend on any nuisance parameters. Finally, for
Property 3, let the distribution of Rpc be denoted Fg,.(r) , which is free of unknown parameters.

Since T = Rpc — BC , the CDF of T may be written as

PHT < 1) =Pr(Rgc <t + BC)

=Fg,.(t + BC) (5.17)

Therefore, BC is the location parameter for the distribution of 7" implying the CDF of T is a
monotonic function of BC [12, pg. 116,134],[73, p. 117]. All three properties from Definition
4 are met for T defined in Equation 5.15 and therefore T is a generalized test variable which is
stochastically decreasing in BC. From Equation 5.14 and 5.15, the generalized p-value for this test

is given by

p(x) =Pr(T =ty | BC = BCy)
=Pr(Rgc — BC > t,;s | BC = BCyp)
=Pr(Rgc — BCy > 0)

=Pr(Rpc > BC)y) (5.18)
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The probability in Equation 5.18 is evaluated via Monte Carlo methods by generating a large
number of values for Rpc (in the same manner as was done in Section 3.3.3 for the GCI), and
then determining the proportion of these values that satisfy the inequality in Equation 5.18 [73, p.
119].

5.3.2 One-sided Hypothesis Test on the Difference of Two Bayes Cost Values.

For testing the hypothesis

Hy:n<novs. H :n>ng (5.3)

recall the parameter of interest, 77, is a function of the nuisance parameters, (s , 0 ja , i) , and

o;g,j=1,...,k (Equation 5.8). Now define T = T(X; x, ) as
T=R,—7 (5.19)
where R;; is defined as
R, = Rpc, — Rpc, (5.20)

and Rpc, and Rpc, are defined as in Equation 3.25, by using Equations 3.16 through 3.19 with the
appropriate sample mean, standard deviation, and sample size for each class within each system. It
is clear following the same reasoning as was presented in Section 5.3.1, that 7,5, = 0 and all three
properties from Definition 4 are met for 7" in Equation 5.19. Thus, T = R, — 7 is a generalized
test variable which is stochastically decreasing in 7 . From Equation 5.14 and 5.19, the generalized

p-value for this test is

p(X) =Pr(T < tops | 17 = 10)
=Pr(Ry — 1 < tops | 1 =10)
=Pr(R; < no)
=Pr(Rpc, — Rpcy < 1o) (5.21)
The probability in Equation 5.21 is evaluated via Monte Carlo methods by generating a large number
of values for Rpc, — Rpc, (in the same manner as was done in Section 3.3.3 for the GCI, however,

now two BC GPQs are found, one for each classification system, and their difference stored). Then

the proportion of these values that satisfy the inequality in Equation 5.21 is determined [73, p. 119].
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5.4 Simulation Results

A simulation study was conducted to demonstrate the performance of the delta method
and generalized hypothesis tests for BC and 7 . Various scenarios are considered including
different sample sizes (n; = 10,50, 100,250), underlying distributions of the feature used for
classification (normal and gamma), differing costs associated with the misclassification outcomes,
and classification accuracy (measured by BC/n value). All scenarios assume a classifier with three
classes and two thresholds (6] < 63) to distinguish between adjacent classes.

All scenarios utilize 3000 simulation runs in R assuming a significance level of @ = 0.05.
When required, numerical minimization is performed using the optim function in R ("L-BFGS-B”
method) [52]. Performance of the hypothesis tests is measured with the simulation by estimating
the size and power of each test.

Definition 5 (Power Function).

The power function of a hypothesis test with rejection region R is the function of 0
defined by B(0) = Pg(X € R) [12, p. 383]

Definition 6 (Size a Test).
For 0 < @ < 1, atest with power function B(0) is a size a test if supgeq, B(0) = @ .[12,
p. 385]
To evaluate the performance of the hypothesis test, the probability of rejecting the null hypothesis is
determined for multiple BC (or 77) values. The power function for a fixed sample size is monotone
in 6 (see for example, Figure 6.1). Therefore, (0) is first determined at the boundary of the null and
alternate parameter space (BC = BCy , 1 = 1) to estimate the size of the test (Supgee, 8(6)). Then
values in the alternate hypothesis space (BC < BCy , n > ng) are evaluated to estimate the power
at increasing increments within the alternate hypothesis. In Section 5.4.1, the performance of the
one-sided hypothesis test on a single BC value is evaluated and in Section 5.4.2, the performance of
the one-sided hypothesis test on the difference of two independent BC values is evaluated.
5.4.1 One-sided Hypothesis Test on a Single Bayes Cost Value.
Four BCjy values are chosen to demonstrate a range of potential classification system
performance thresholds. Under the assumption of all ¢;jp; = 1, fori # j, BCy = 0.3,0.5,1.0,1.25.

For the two additional cost structures, chosen as the cost structures used in previous chapters,
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BCy was chosen to reflect similar scenarios (ie. similar normal curves) with the appropriate cost
structure applied (recall Cost; = [z (i) i] , Costy = [(%) (§ g] ,and all p; = %). This results in
BCoy cosn1 =0.1,0.2,0.35,0.45 and BCo cos2 = 0.2,0.4,0.7,0.9. The normal distribution parameters
to achieve these BCy values are presented in Table 5.1. To study the power at differing BC values
in the alternate hypothesis, the means of the first and third classes are varied to achieve the required

BC value.

Table 5.1: Distributional parameters for the parametric hypothesis test simulation.

Distribution BCy Class 1 Class 2 Class 3
Normal (Equal Costs) u o U o 7 o
030 -2879 1 0 1 2879 1
050 -2301 1 O 1 2301 1
1.00 -1349 1 O 1 1.349 1
125 -0978 1 O 1 0978 1
Normal (Costy) u o U o 7 o
0.10 -2879 1 0 1 2879 1
020 -2077 1 0 1 2077 1
035 -1.333 1 0 1 1.333 1
045 -0985 1 O 1 0.985 1
Normal (Cost,) u o U o 7 o
020 -2976 1 0 1 2976 1
040 -2.187 1 0 1 2187 1
0.70 -1408 1 O 1 1.408 1
090 -0989 1 O 1 0.989 1
Gamma (Equal Costs) a B a p a B
0.30 1.3 1 23 37 5 10.743
0.50 1.3 1 23 37 5 5.234
1.00 1.3 1 2 15 4 1.889
1.25 1.3 1 2 15 4 1.162

Gamma distributed features are also considered for the equal weights scenario in order to
evaluate the performance of the hypothesis tests when the assumption of normality is not met.

The gamma distributional parameters used are presented in Table 5.1. To vary the BC values for
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evaluating the power of the test, the @ and 8 parameters from the second and third classes are varied
appropriately.

The size and power of the delta and generalized hypothesis tests for equal weights are presented
in Table 5.2 for a normally distributed feature and in Table 5.5 for a gamma distributed feature’.
Simulation results for a normally distributed feature with Cost; are presented in Table 5.3 and in
Table 5.4 for Costy.

In general, the performance of the delta and generalized hypothesis tests are similar. Usually,
the delta method hypothesis test is slightly more powerful than the generalized hypothesis test,
however when this occurs the delta method test often has a size > « , which is not desirable. Overall,
the size of the generalized hypothesis tests is smaller than the size of the delta method hypothesis
test, and is usually bounded < « . For n; = 10 and equal weights (Table 5.2), the delta method
size far exceeds 0.05 (a € [0.09,0.118]). Therefore, the generalized hypothesis test should be used
over the delta method tests for small sample sizes to assure « is maintained. As BCy approaches
the value of chance classification (BC=1.5 for a three-class scenario) the feature’s distributions for
each class become more overlapped, making determination of the optimal point and correct class
ordering more difficult. Therefore, as BCy increases, the performance of both tests is degraded with
respect to size (see Table 5.2, BCy = 1.25). This is more apparent when observing the generalized
hypothesis test.

For the unequal cost scenarios with n; > 50, the delta method performs better with respect
to power if a size of ~ « is acceptable (Tables 5.3 and 5.4). However, the generalized hypothesis
test has very similar power to the delta method test, and maintains size < « (except for the one case
where n; = 10 and BC = 0.9 for Cost,).

As expected, the performance of both methods is degraded when the feature is not normally
distributed (see Table 5.5). Overall, the performance for the gamma distributed feature is fair for

most scenarios and reflects the robustness in these methods for minor deviations from normality.

7A detectable difference equal to BCy would result in testing at BC = 0 which is not possible with a normal or gamma
distributed feature. Instead, the power at this detectable difference is approximated by testing at BC = 0.001.
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Table 5.2: Power for three classes with a normally distributed feature with equal weights. Detectable
difference indicates the difference of the assumed true BC value and BCy (BC < BCy). The power

at a detectable difference of zero is the estimated size of the hypothesis test.

Detectable Delta Hypothesis Test Generalized Hypothesis Test
Difference n; =10 50 100 250 10 50 100 250

BCyp =0.30 0 (@) 0.118 0.061 0.071 0.063 0.018 0.028 0.043 0.046
0.01 0.131 0.086 0.106 0.122 0.023 0.038 0.069 0.092
0.05 0.193 0273 0415 0.678 0.040 0.158 0312 0.614
0.10 0.332  0.660 0.882 0.999 0.087 0.508 0.823 0.997
0.20 0.758 0.999 1.000 1.000 0.364 0.998 1.000 1.000
0.30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

BCp =0.50 0 () 0.105 0.053 0.069 0.061 0.025 0.031 0.045 0.047
0.01 0.114 0.073 0.092 0.103 0.030 0.040 0.067 0.082
0.05 0.160 0.207 0.304 0.505 0.043 0.125 0.230 0.455
0.10 0.239 0465 0.695 0.957 0.075 0340 0.617 0.944
0.20 0.501 0945 0.997 1.000 0.210 0.898 0.994 1.000
0.30 0.810 1.000 1.000 1.000 0.503 1.000 1.000 1.000
0.40 0.984 1.000 1.000 1.000 0.890 1.000 1.000 1.000

0.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
BCyp =1.00 0 (@) 0.090 0.055 0.064 0.056 0.044 0.043 0.054 0.051
0.01 0.097 0.071 0.085 0.096 0.047 0.054 0.074 0.085

0.05 0.134 0.164 0.246 0.399 0.069 0.128 0.213 0.383
0.10 0.193 0358 0.558 0.870 0.108 0.308 0.525 0.860
0.20 0.380 0.818 0.975 1.000 0.229 0.788 0.968 1.000
0.30 0.586 0990 1.000 1.000 0.430 0.985 1.000 1.000
0.40 0.798 1.000 1.000 1.000 0.649 1.000 1.000 1.000
0.50 0.934 1.000 1.000 1.000 0.859 1.000 1.000 1.000

BCyp=1.25 0 () 0.095 0.062 0.061 0.057 0.068 0.054 0.055 0.054
0.01 0.103 0.076 0.086 0.095 0.074 0.071 0.081 0.093
0.05 0.144 0.165 0.240 0.401 0.106 0.153 0.231 0.394
0.10 0.202 0361 0.551 0.871 0.158 0.340 0.537 0.867
0.20 0.384 0.813 0.971 1.000 0.315 0.798 0.970 1.000
0.30 0.584 0987 1.000 1.000 0.518 0.985 1.000 1.000
0.40 0.789 1.000 1.000 1.000 0.725 1.000 1.000 1.000
0.50 0.920 1.000 1.000 1.000 0.887 1.000 1.000 1.000
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Table 5.3: Power for three classes with a normally distributed feature with the Cost; cost structure.
Detectable difference indicates the difference of the assumed true BC value and BCy (BC < BCy).

The power at a detectable difference of zero is the estimated size of the hypothesis test.

Detectable Delta Hypothesis Test Generalized Hypothesis Test
Difference n; =10 50 100 250 10 50 100 250
BCy =0.10 0(a) 0.118 0.061 0.071 0.063 0.017 0.027 0.043 0.046

0.01 0.161 0.164 0.228 0.355 0.029 0.080 0.151 0.292
0.05 0.526 0951 0.997 1.000 0.175 0.891 0.994 1.000
0.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

BCp =0.20 0 () 0.097 0.052 0.068 0.061 0.022 0.030 0.045 0.046
0.01 0.126 0.119 0.164 0.247 0.032 0.066 0.118 0.210
0.05 0.318 0.698 0.917 0.999 0.116 0.590 0.880 0.999
0.10 0.715 0998 1.000 1.000 0413 0.998 1.000 1.000
0.15 0.980 1.000 1.000 1.000 0.892 1.000 1.000 1.000
0.20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

BCyp =0.35 0 (@) 0.089 0.062 0.064 0.060 0.032 0.038 0.046 0.049
0.01 0.111 0.098 0.130 0.190 0.041 0.070 0.106 0.167
0.05 0.252 0519 0.764 0980 0.109 0436 0.712 0.974
0.10 0.532 0972 0999 1.000 0.317 0.948 0.998 1.000
0.15 0.840 1.000 1.000 1.000 0.636 1.000 1.000 1.000
0.20 0977 1.000 1.000 1.000 0.911 1.000 1.000 1.000
0.25 1.000 1.000 1.000 1.000 0.996 1.000 1.000 1.000
0.30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

BCp =0.45 0 () 0.106  0.055 0.071 0.062 0.038 0.044 0.048 0.051
0.01 0.112 0.099 0.117 0.167 0.048 0.073 0.099 0.151
0.05 0.236 0.437 0.660 0.939 0.117 0375 0.616 0.931
0.10 0464 0907 0.992 1.000 0.289 0.878 0.991 1.000
0.15 0.742 0998 1.000 1.000 0.556 0.997 1.000 1.000
0.20 0931 1.000 1.000 1.000 0.833 1.000 1.000 1.000
0.25 0.993 1.000 1.000 1.000 0.965 1.000 1.000 1.000
0.30 1.000 1.000 1.000 1.000 0.998 1.000 1.000 1.000
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Table 5.4: Power for three classes with a normally distributed feature with the Cost, cost structure.
Detectable difference indicates the difference of the assumed true BC value and BCy (BC < BCy).

The power at a detectable difference of zero is the estimated size of the hypothesis test.

Detectable Delta Hypothesis Test Generalized Hypothesis Test
Difference n; =10 50 100 250 10 50 100 250

BCy =0.20 0 (@) 0.136  0.072 0.077 0.065 0.022 0.034 0.047 0.046
0.01 0.158 0.105 0.134 0.158 0.028 0.049 0.085 0.118
0.05 0274 0415 0.604 0.890 0.066 0.269 0.497 0.846
0.10 0.515 0903 0.992 1.000 0.175 0.811 0.982 1.000
0.15 0.828 1.000 1.000 1.000 0.454 1.000 1.000 1.000
0.20 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000

BCp =0.40 0 () 0.119 0.065 0.071 0.060 0.031 0.037 0.050 0.046
0.01 0.132 0.084 0.113 0.119 0.036 0.054 0.077 0.099
0.05 0.193 0.253 0.380 0.634 0.065 0.172 0.306 0.588
0.10 0.310 0.600 0.829 0.993 0.115 0487 0.773 0.991
0.15 0465 0.892 0.991 1.000 0.206 0.830 0.984 1.000
0.20 0.656 0.992 1.000 1.000 0.339 0.983 1.000 1.000
0.25 0.828 1.000 1.000 1.000 0.552 1.000 1.000 1.000
0.30 0.954 1.000 1.000 1.000 0.784 1.000 1.000 1.000

BCy =0.70 0 (@) 0.104 0.062 0.070 0.058 0.046 0.047 0.057 0.051
0.01 0.114 0.080 0.095 0.102 0.049 0.060 0.077 0.091
0.05 0.160 0.198 0.294 0.497 0.082 0.150 0.255 0.470
0.10 0.243 0460 0.669 0951 0.128 0.392 0.632 0.946
0.15 0.339 0.725 0938 1.000 0.190 0.668 0.920 1.000
0.20 0468 0921 0.997 1.000 0.285 0.885 0.994 1.000
0.25 0.609 0988 1.000 1.000 0.403 0.983 1.000 1.000
0.30 0.731 0999 1.000 1.000 0.549 0.999 1.000 1.000

BCp=0.90 0 () 0.105 0.065 0.063 0.058 0.064 0.056 0.056 0.053
0.01 0.113 0.082 0.094 0.100 0.072 0.073 0.086 0.095
0.05 0.155 0.187 0.267 0457 0.103 0.161 0.251 0.441
0.10 0.226 0.417 0.622 0915 0.151 0.386 0.601 0.910
0.15 0.318 0.672 0.903 0.999 0.225 0.636 0.891 0.999
0.20 0427 0.870 0990 1.000 0.314 0.845 0.987 1.000
0.25 0.553 0973 1.000 1.000 0.420 0.965 1.000 1.000
0.30 0.670 0.997 1.000 1.000 0.545 0.996 1.000 1.000
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Table 5.5: Power for three classes with a gamma distributed feature with equal weights. Detectable
difference indicates the difference of the assumed true BC value and BCy (BC < BCy). The power

at a detectable difference of zero is the estimated size of the hypothesis test.

Detectable Delta Hypothesis Test Generalized Hypothesis Test
Difference n; =10 50 100 250 10 50 100 250

BCyp =0.30 0 (@) 0.085 0.038 0.034 0.014 0.012 0.017 0.018 0.012
0.01 0.092 0.051 0.050 0.031 0.015 0.023 0.032 0.022
0.05 0.143 0.170 0.216 0.353 0.026 0.097 0.160 0.294
0.10 0273 0573 0.817 0.990 0.087 0.457 0.756 0.986
0.20 0.603 0989 1.000 1.000 0.296 0.974 1.000 1.000
0.30 0.832 0989 0.999 1.000 0.975 1.000 1.000 1.000

BCp =0.50 0 () 0.123  0.089 0.107 0.089 0.031 0.055 0.080 0.073
0.01 0.131 0.111 0.139 0.153 0.036 0.070 0.111 0.130
0.05 0.182 0.264 0.375 0.607 0.054 0.188 0315 0.571
0.10 0270 0547 0.768 0.975 0.093 0432 0.711 0.968
0.20 0.534 0965 0.999 1.000 0.242 0932 0.998 1.000
0.30 0.747 1.000 1.000 1.000 0.599 1.000 1.000 1.000
0.40 0913 1.000 1.000 1.000 0.883 1.000 1.000 1.000
0.50 0.833 0989 0.999 1.000 1.000 1.000 1.000 1.000

BCy =1.00 0(a) 0.142 0.171 0.221 0.313 0.073 0.146 0.202 0.298
0.01 0.154 0.201 0.281 0.418 0.083 0.174 0.256 0.406
0.05 0205 0371 0.546 0.819 0.123 0329 0.515 0.807
0.10 0.287 0.609 0.825 0.989 0.182 0.574 0.804 0.987
0.20 0.484 0930 0995 1.000 0.358 0.913 0.995 1.000
0.30 0.660 0997 1.000 1.000 0.562 0.996 1.000 1.000
0.40 0.778 1.000 1.000 1.000 0.766 1.000 1.000 1.000
0.50 0962 1.000 1.000 1.000 0.919 1.000 1.000 1.000

BCyp=1.25 0 () 0.129 0.099 0.085 0.061 0.117 0.094 0.083 0.061
0.01 0.143 0.121 0.125 0.112 0.127 0.117 0.117 0.110
0.05 0.198 0.258 0.341 0493 0.169 0.240 0.332 0.490
0.10 0.286 0.511 0.701 0.931 0.249 0.490 0.692 0.930
0.20 0490 0913 0.992 1.000 0439 0905 0.991 1.000
0.30 0.690 0.999 1.000 1.000 0.661 0.998 1.000 1.000
0.40 0.839 1.000 1.000 1.000 0.847 1.000 1.000 1.000
0.50 0921 1.000 1.000 1.000 0.953 1.000 1.000 1.000
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5.4.2 One-sided Hypothesis Test on the Difference of Two Bayes Cost Values.

To evaluate the performance of the delta method and generalized hypothesis tests used for
comparing the performance of two independent classification systems with respect to their BC
value, 1 is fixed at zero. All three cost structures considered previously are also used here: all
cijpj = 1 (fori # j), Cost; = [g(}z] , and Costy = [(ll)ég] (all with p; = %). The purpose
of this hypothesis test is to compare two competing classification systems, and therefore, the cost
structure placed on classification system A and classification system B are always the same. When
the costs of misclassification are equal, normal and gamma distributed features are considered. For
the unequal cost scenarios only normally distributed features are used. In order to evaluate the size
and power of the test, the performance of classification system A is fixed (BC4 = 0.80 for equal
costs, BC4 = 0.50 for Cost;, and BC4 = 0.70 for Costy) and the performance of classification
system B is varied to achieve the desired 7 values.

The power and size of each hypothesis test is estimated by simulation. The results for equal
costs are presented in Table 5.6 for a normally distributed feature and in Table 5.7 for a gamma
distributed feature. The results for Cost; and Cost; are presented in Tables 5.8 and 5.9, respectively.
When all ¢;jp; = 1, fori # j, the delta and generalized hypothesis tests perform similarly well.
Again, for n; = 10 the delta method hypothesis test has size greater than a (@ € [0.053,0.061]),
however not by a large margin, and maintained equivalent or higher power than the generalized
hypothesis test (Table 5.6). The gamma distributed feature does not degrade the performance of
the hypothesis tests as much as when testing a single BC value (see Section 5.4.1). In fact, the
performance with the gamma distributed feature is good, with size ~ « (Table 5.7). Since 7 is the
difference of the BC values and therefore is a function of the difference of the distributions, this test
statistic may be more similar to a normal distribution as compared to the one-sided test on a single
BC value with a gamma distributed feature.

Similar to the one sided hypothesis tests on a single BC value, when costs are unequal, the delta
method hypothesis test has slightly higher power than the generalized hypothesis test. However,
again the delta method hypothesis also has slightly worse size than the generalized hypothesis test

(see Tables 5.8 and 5.9).
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Table 5.6: Power for three-class systems with normally distributed features with equal weights for
testing 7 < 0. Detectable difference indicates the difference of the assumed true value of BC4 — BCp

(n = 0). The power at a detectable difference of zero is the estimated size of the hypothesis test.

Detectable Delta Hypothesis Test Generalized Hypothesis Test
Difference n; =10 50 100 250 10 50 100 250

no=0 0 () 0.061 0.052 0.043 0.052 0.047 0.048 0.041 0.051
0.01 0.066 0.060 0.056 0.078 0.049 0.057 0.054 0.076
0.05 0.086 0.112 0.147 0.254 0.066 0.109 0.142 0.253
0.10 0.116 0222 0.345 0.629 0.095 0.213 0.338 0.628
0.15 0.155 0374 0593 0908 0.125 0.368 0.588 0.906
0.20 0.206 0558 0.816 0.991 0.169 0.550 0.811 0.991
0.25 0.268 0.733 0.939 1.000 0.222 0.724 0.939 1.000
0.30 0.340 0.877 0.989 1.000 0.293 0.869 0.989 1.000
0.35 0424 0951 0998 1.000 0.364 0.948 0.998 1.000
0.40 0.504 0985 1.000 1.000 0.450 0.983 1.000 1.000
0.45 0.594 0995 1.000 1.000 0.541 0.995 1.000 1.000
0.50 0.685 1.000 1.000 1.000 0.638 1.000 1.000 1.000

Table 5.7: Power for three-class systems with gamma distributed features with equal weights for
testing 7 < 0. Detectable difference indicates the difference of the assumed true value of BC4 — BCp

(n = 0). The power at a detectable difference of zero is the estimated size of the hypothesis test.

Detectable Delta Hypothesis Test Generalized Hypothesis Test
Difference n; =10 50 100 250 10 50 100 250

no=0 0 (a) 0.070  0.059 0.066 0.059 0.035 0.055 0.062 0.059
0.01 0.073 0.067 0.082 0.085 0.038 0.064 0.078 0.085
0.05 0.094 0.124 0.166 0.242 0.054 0.117 0.165 0.240
0.10 0.121 0.215 0.322 0.542 0.081 0.209 0.321 0.539
0.15 0.152 0334 0.502 0.808 0.112 0.328 0.499 0.812
0.20 0.194 0.480 0.690 0.953 0.157 0.478 0.694 0.954
0.25 0266 0.684 0901 0.999 0202 0.670 0.896 0.999
0.30 0.333 0.841 0.974 1.000 0.263 0.834 0.975 1.000
0.35 0409 0934 099 1.000 0.337 0929 0.996 1.000
0.40 0499 0981 1.000 1.000 0.422 0979 1.000 1.000
0.45 0.586 099 1.000 1.000 0.519 0.996 1.000 1.000
0.50 0.681 0999 1.000 1.000 0.614 0.999 1.000 1.000
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Table 5.8: Power for three-class systems with normally distributed features with the Cost; structure
for testing n < 0 . Detectable difference indicates the difference of the assumed true value of
BC4 — BCp (n = 0). The power at a detectable difference of zero is the estimated size of the

hypothesis test.

Detectable Delta Hypothesis Test Generalized Hypothesis Test
Difference n; =10 50 100 250 10 50 100 250

no=0 0(a) 0.060 0.050 0.044 0.051 0.037 0.042 0.052 0.053
0.01 0.071 0.078 0.073 0.109 0.043 0.065 0.088 0.109
0.05 0.126 0241 0.366 0.667 0.081 0.241 0.366 0.675
0.10 0.233 0.605 0.857 0997 0.168 0.601 0.851 0.995
0.15 0.378 0909 0.994 1.000 0.313 0.895 0.994 1.000
0.20 0.570 0992 1.000 1.000 0.512 0.991 1.000 1.000
0.25 0.752 1.000 1.000 1.000 0.704 1.000 1.000 1.000
0.30 0.893 1.000 1.000 1.000 0.869 1.000 1.000 1.000
0.35 0971 1.000 1.000 1.000 0.962 1.000 1.000 1.000
0.40 0.995 1.000 1.000 1.000 0.995 1.000 1.000 1.000
0.45 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 5.9: Power for three-class systems with normally distributed features with the Cost, structure
for testing n < 0 . Detectable difference indicates the difference of the assumed true value of
BC4 — BCp (n = 0). The power at a detectable difference of zero is the estimated size of the

hypothesis test.

Detectable Delta Hypothesis Test Generalized Hypothesis Test
Difference n; =10 50 100 250 10 50 100 250

no=0 0(a) 0.053 0.053 0.048 0.051 0.037 0.045 0.048 0.049
0.01 0.059 0.061 0.064 0.079 0.040 0.055 0.065 0.075
0.05 0.082 0.129 0.168 0.300 0.057 0.120 0.171 0.286
0.10 0.124 0.266 0412 0.728 0.087 0.263 0.403 0.731
0.15 0.179 0453 0.706 0.964 0.131 0.462 0.699 0.966
0.20 0.242  0.669 0903 0998 0.186 0.664 0.896 0.998
0.25 0.319 0.850 0.983 1.000 0.255 0.837 0.982 1.000
0.30 0424 0944 0998 1.000 0.343 0.937 0.999 1.000
0.35 0.528 0988 1.000 1.000 0.443 0984 1.000 1.000
0.40 0.629 0999 1.000 1.000 0.548 0.997 1.000 1.000
0.45 0.727 1.000 1.000 1.000 0.672 1.000 1.000 1.000
0.50 0.822 1.000 1.000 1.000 0.784 1.000 1.000 1.000

5.5 Summary

Generalized and delta method hypothesis tests were developed for testing one sided hypotheses
on a single BC value as well as the difference between two BC values for comparing independent
competing classification systems. Both methods are developed assuming classification systems that
use a single feature that is independently and normally distributed for each class. The performance
of the proposed methods was demonstrated with simulations that evaluated the power and size of
the tests. Varying scenarios as well as null hypothesis values were considered with the simulation.

In general, the generalized hypothesis test performed better and could be recommended for
both forms of hypotheses (tests on BCy and n) and the various cost scenarios. Although, the delta
method tests performed similar to the generalized tests and often had greater power, their size was
sometimes greater than @ which is not desirable. However, the delta method performance was
improved for tests on 1 , which might be due to the increase in total sample size (when considering

two classification systems instead of one) or the structure of the test statistic itself. For both methods,
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the performance with respect to size was degraded for testing against the BCy value which was
close to chance classification (BCy = 1.5). When the assumption of normality was not met, the
performance of the hypothesis tests on a single BCy value was degraded. However, for testing the
difference of two BC values, the performance of the tests remained fairly consistent. Therefore,
it seems that when testing a hypothesis on 7 , the methods are more robust to departures from

normality.
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VI. Nonparametric Hypothesis Tests

6.1 Introduction

In this chapter, hypothesis tests for testing the performance of a classification system with
BC are developed, making no assumptions about the classification system’s underlying feature
distributions or structure. Instead, inference methods are derived from the resulting classification
outcomes from a classification system at a fixed § € ® , as was done for the nonparametric Cls
derived in Chapter 4. Under this nonparametric framework, it is assumed that the classification
system outcomes from each class may be modeled with independent multinomial distributions.

This chapter will consider the same two hypotheses that were developed in Chapter 5 under the
parametric framework. The first hypothesis tests whether or not a classification system performs at

least as well as a specified threshold value, BC , where

Hp : BC 2 BCy vs. H; : BC < BCy 6D

The second hypothesis considered compares two independent competing classification systems’

performance. This is done by testing 7, the difference in BC values from the two systems where

n=BCs— BCp (5.2)

and

Hy:n<novs.Hy :n>no (5.3)

For the specific case of testing if classification system B is performing better than classification
system A, this hypothesis is tested at g = 0 .

In Section 6.2, exact small sample methods are developed for testing both hypothesis tests,
using the fiducial theory developed in Section 4.2. In Section 6.3, nonparametric hypothesis tests
for both hypotheses are developed for large sample sizes using likelihood ratio tests (LRTs). A
simulation is conducted to demonstrate the performance of the tests with respect to power and size,
and the results are presented in Section 6.4. The overall findings and conclusions are presented in

Section 6.5.
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6.2 Exact Hypothesis Tests

Under the nonparametric framework and when sample sizes are small, hypothesis tests may be
conducted using similar exact methods as those used for developing fiducial intervals around BC in
Section 4.2. In fact, the fiducial intervals presented in Section 4.2 are simply the inversion of the
acceptance region of a two sided hypothesis test (BC = BCy) on BC [7].

6.2.1 One-sided Hypothesis Test on a Single Bayes Cost Value.

The hypothesis of the form
Hy: BC > BCyvs. Hy : BC < BCy 5.1

may be tested by calculating an associated p-value for the test. Recall from Theorem 7 (Section

5.2.1) that a valid p-value is given by

p(x) = sup Py(W(X) =2 W(x)) (6.1)

when large values of W(X) give evidence that H, is true. For the nonparametric framework, W(X)

is BC defined empirically as

k  k X
°Ya ij
Y=BC-= Z Z ciipj— (4.27)
: - n;j
=1 j=1
1#]
where each X;; represents the number of observations classified as the i’ class when their true class
is j, nj is the total number of observations for the j™ class, and each Xjj is distributed multinomial.

Once again for the hypothesis in Equation 5.1, large values of W(X) give evidence that H; is false,

and therefore the p-value for this test is

p(x) = sup Py(W(X) < W(x)) (5.5

Under the multinomial framework, a restriction on the BC parameter space is also a restriction
on the joint multinomial parameter space, S = {p = (p1,...,Px) : Pj = (P1jj>---»>Pxj)>Pij = 0,

and Zi.‘:l pijj = 1} . Thus, the hypotheses may be rewritten as
Hy:peSpvs. lepeSOC (6.2)

where Sy is the set of multinomial probabilities which result in BC > BCj , and is defined as

Kok
So={P=P1,---.PK) : Pj = (P1}js---» P> Pij = 0, Xk, pyj = 1, and Zl Zl cijpjpilj = BCo} .
i=1 j=

i#j
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From an observed BC , the exact p-value for testing the hypothesis BC > BC is given by
p(x)= sup Ppc(Y <y)
BC>BC

=sup Pp(Y <y)
PESo

AwZEﬁmm> (63)

PES0 120 xeA
y=t

where A is the joint multinomial sample space which is the set of 1 x k> sized vectors x =

(X115 X215 - - - » Xk—1jk> Xkx) Where each x;); is a nonnegative integer and Zle xjj=n;,peS,and

k
A =] [ A0

= ﬁ ﬁ n (4.8)
; J Xi| j!
The hypothesis is tested by calculating the p-value in Equation 6.3 and comparing this value to the
chosen significance level, @ . For p(x) less than a , the null hypothesis is rejected.

6.2.2 One-sided Hypothesis Test on the Difference of Two Bayes Cost Values.

To test the hypothesis of the form
Hy:n<novs.Hy:n>no (5.3)

under the framework of an exact hypothesis test, modeling the outcomes from the two classification
systems with independent multinomial distributions, the parameter of interest, r7 , is a function of

multinomial probabilities such that

k

Z chlprJPllfA Z chlijjplljB (6.4)

i=1,i#j j=1 i=1i#j j=1

and

k k k
| j,A ilj,B
Z ZQI/AP} ” Z Cl|]Bp] ljB (6.5)

i=1,i#j j=1 FA i) = nj,

Define Ay as the joint multinomial sample space for classification system A, which is the set of 1xk?
: . — k —
sized vectors where Ay = {Xa = (X1.4,...,XkA) I XkA = (X1]jAs- .., Xk|jA), Xijja € Z7, 2o XijA =

n;a} . Similarly, define Ap as the analogous joint multinomial sample space for classification system
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B. Then the sample space for the entire experiment (for both classification systems) may be defined
as Ay p which is the set of 1 x 2k? sized vectors where Asp ={(Xa,XB) : XA € Ay, Xp € Ap} .
Also, define the joint multinomial probability space for classification system A where pay €
S = {pa = (PrAs----PkA) : Pja = (P1jjas---Pujads Pija = 0, and Y5, pjja = 1} and
similarly define pp for classification system B. The pmf for this experiment is the joint multinomial

distribution from both classification systems such that

SXa X5 (XA, XB | PA. PB) = l_[fXJA(XJ A) X fX;5(XjB)

k k -xlle pxllj,B

1| A ilj,B
| | | | L 15! ! , (6.6)
i=1 j=1 Xz| A- Xi|j,B*

Once again, the hypotheses may be rewritten as a restriction on the joint multinomial parameter

space.

Ho : (pa.PB) € S2vs. Hy : (pa,pg) € S3 (6.7)

where S% = {(pa,PB) : Pa € S,pB € Sand 5 < 1o} . Then, for an observed 77 from a classification
system, the exact p-value for testing the hypothesis in Equation 5.3 is
p(X) =sup Py(Y > y)
n<no

= sup Py, pp¥ 2y)
(pa-PB)ES]

suplY)
= sp > > /Xuxu(a.X8 | Pa.PB) (6.8)
(PAPBES] 1=y (x4, Xp)EAA 5
Y=t
kK k
where Y ={y:y= Y X c,UApJ T Z Z clUBpJ hi % (Xa,XB) € Ay p} . For an observed
i=1,i#j j=1 i=1,i#j j=1

value of , Y, and a fixed ng , the hypothesis is tested by calculating the p-value in Equation 6.8
and comparing this value to the chosen significance level, « . If p(x) is less than a , reject the null

hypothesis.

6.3 Likelihood Ratio Tests
LRTs are a general and common method that may be applied for hypothesis testing.

Asymptotic properties of the likelihood ratio also make these tests easy to implement under large
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sample assumptions. For the nonparametric methods developed in this section, it is assumed that
each class has a large sample size (n; < 50).
Definition 7 (Likelihood Ratio Test Statistic).

The likelihood ratio test statistic for testing Hy : 0 € ®¢ versus Hy : 6 € ®g is

supe,L(@ | x)

A = supeL(0 | x)

[12, p. 375]

To conduct a hypothesis test using the likelihood test statistic for large samples sizes, the
following theorem may be used:

Theorem 8. Let X1, ...,X, be a random sample from a pdf or pmf f(x | 6) . Under the
regularity conditions ... , if 0 € O , then the distribution of the statistic —2log A(X)
converges to a chi squared distribution as the sample size n — oo . The degrees
of freedom of the limiting distribution is the difference between the number of free
parameters specified by 6 € ©g and the number of free parameters specified by
0e®/[12 p. 490].

Regularity conditions are addressed in the Appendix, Section A.5.

6.3.1 One-sided Hypothesis Test on a Single Bayes Cost Value.

For this nonparametric large sample framework, it is again assumed that the outcomes from
the classification system are distributed multinomial. Recall from Section 6.2, that under this

framework, the one sided hypothesis on a single BC value may be written as a restriction on the

joint multinomial parameter space:
Hy:peSovs.Hi :peS§ (6.2)

The likelihood function is a function of the parameters, p , with the data assumed given. Thus,
the likelihood is comprised of the multinomial pmf, however it may be simplified by removing the

constant multipliers which do not depend on the parameters. Therefore,

k k
Ll |[]r (6.9)
i=1 j=1

An unrestricted maximization (supg L(p | X)) of this likelihood results in the multinomial MLE,

which is given by py; = 32 . 1If BC > BC, is observed, then p € Sy which results in
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Supg, L(p | X) = supg L(p | X) . Therefore,

1 if BC > BC,
AX) = (6.10)

supsy L(plx) .. 5=
W if BC < BC()

The degrees of freedom for the test (v) is the difference of the number of free parameters in the
unrestricted parameter space and the restricted parameter space, which is 1. The corresponding

p-value for this large sample hypothesis test is

1 if BC > BCy
px) = (6.11)
Pr(y? > —2log A(x))  if BC < BCy

For an observed BC and a fixed BCy , the hypothesis is tested by calculating the p-value in Equation
6.11 and comparing this value to the chosen significance level, a . If p(x) is less than « , the null
hypothesis is rejected.

6.3.2 One-sided Hypothesis Test on the Difference of Two Bayes Cost Values.

To test the hypothesis

Hy:n<novs. H :n>no (5.3)

using a LRT, the equations from Section 6.2.2 are used, where
ko k ko k
= Z Z CiljAPjPiljA ~ Z Z Cilj,BPPilj.B (6.4)
i=l,i#j j=1 i=Li#j j=1

and

£ tle k k Xilj,B
Z ZC’“AP/ T Z Zcilj,BPj nis (6.5)

i=Li#j j=1 nj. i=li#j j=1
Asp . PA , and pp are defined as they were in Section 6.2.2. Recall, the hypothesis to be tested may

be written as a restriction on the joint multinomial parameter space.

C
Ho : (pa,PB) € S§ vs. Hy : (pa,pB) € Sp 6.7)

where S% = {(pa,PB) : Pa € S,ps € Sandn < no} . The likelihood function for the joint

multinomial distribution of both classification systems is

k k
Lipa, s | xa.xa) o« | [ [ [ s pils 6.12)
i=1 j=1
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An unrestricted maximization (supg L(pa, PB | XA, Xa)) of this likelihood results in the multinomial
MLEs, which are given by p;; = %’ If 7 < no is observed, then (pa, ps) € S which results in
supg, L(PA, PB | XA, XA) = supg L(pa, PB | Xa,Xa) . Therefore,

1 if 7 < no
AX) = (6.13)

S”PS%L(PAaPleA,XA) o
Donpahann 7> 10

The degrees of freedom for the test (v) is the difference of the number of free parameters in the
unrestricted parameter space and the restricted parameter space, which is 1. The p-value for this
hypothesis test is

1 ity <no

p(x) = (6.14)

Pr(y3 > —2log A(x)) if 77> no

For an observed 77 and a fixed 7 , the hypothesis is tested by calculating the p-value in Equation

6.14 and comparing this value to the chosen significance level, @ . For p(x) less than « , the null

hypothesis is rejected.

6.4 Simulation Results

A simulation study was conducted to demonstrate the performance of the exact and likelihood
ratio hypothesis tests for BC and 7 . Various scenarios are considered including different sample
sizes (n; = 5,10,20,30 for the exact test and n; = 10, 50, 100, 250 for the LRT), differing costs
associated with the misclassifications, and classification accuracy (measured by BCy/ng value).
All scenarios make no assumptions about the structure of the underlying classification system or
feature distributions, and therefore the classification outcomes are simulated with random draws
from multinomial distributions. The exact method is appropriate for small sample sizes and the LRT
method is appropriate for larger sample sizes which is why they are simulated with different sample
size scenarios. However, due to the LRT’s good performance at n; = 10 , further comparisons
between the LRT and exact method are made with small sample sizes using power curves (Section
6.4.1). The performance of the tests is measured by their power and size (Definitions 5 and 6,
Section 5.4). Once again, this is accomplished by determining the probability of rejecting the null

hypothesis for multiple BC (or i7) values.
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In Section 6.4.1, the performance of the exact and likelihood ratio one-sided hypothesis tests on
a single BC value is evaluated. In Section 6.4.2, the performance of these tests on the difference of
two BC values is evaluated. All simulations are run in R assuming a significance level of @ = 0.05
with 3000 simulation runs [52]. The LRT requires the maximization of the likelihood given the
observed data over the null parameter space. This is accomplished by performing a constrained
maximization of the multinomial log-likelihood in R using the function constrOptim with method
”Nelder-Mead” [52].

6.4.1 One-sided Hypothesis Test on a Single Bayes Cost Value.

For consistency, the same BCy and cost structures used to demonstrate the performance of
the parametric hypothesis tests in Section 5.4.1 are also used in this section. Recall, four BCy
values are used to demonstrate a range of test performances. Under the assumption of equal

costs on all misclassification probabilities, BCy = 0.3,0.5,1.0,1.25. For the two additional cost

structures (Cost; = [2(}3] and Cost, = ?é}%] , Dj = %) BCocosnn = 0.1,0.2,0.35,0.45 and
BCycosrr = 0.2,0.4,0.7,0.9. For all simulated BC values, it is assumed the misclassification
probabilities are equally distributed among the multinomial misclassification outcomes. The size
and power of the exact and likelihood ratio hypothesis tests are presented in Table 6.1 for equal
weights, and Tables 6.2 and 6.3 for Cost; and Cost,, respectively.

It is clear from these results that the exact hypothesis test is an @ or smaller sized test (ie. @
level test). Also, as expected, the exact hypothesis test is conservative and the power of the test
increases as n; increases (Table 6.1). For BCy = 0.3 and 0.5 and n; = 5, the test will never reject
the null hypothesis. For both of these BCy scenarios, the p-values for the tests at BC = 0 are 0.21
and 0.06, respectively. Therefore, with n; = 5 these two tests never have enough power to reject the
null hypothesis at @ = 0.05. For BCy = 0.5, the null hypothesis could be rejected for BC = 0 with
a significance level greater than 0.06. Similar scenarios with respect to p-values and power result
for the exact test for Cost; and Cost, (Tables 6.2 and 6.3). Notably, these cost structures result in
decreased power for the exact test.

The LRT (n; > 10) is also an « level test (Tables 6.1 through 6.3). Like the exact test, the

power increases for increasing n; . There are also scenarios where this test never rejects the null
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hypothesis, due to comparable reasons as the exact test (Tables 6.2 and 6.3). Finally, when the costs
on the misclassification probabilities are not equal, the LRT generally has higher power than the
exact test when considering the same sample size scenario (n; = 10), with some exceptions for
small BC values.

To consider the comparison between the exact test and LRT further, power curves were plotted
for differing BCy values assuming equal costs and small sample size scenarios (Figure 6.1). These
plots visually demonstrate the similar performance between both hypothesis test methods. Although
the LRT is more powerful than the exact test at n; = 5, the LRT also has size greater than « at this
sample size. For larger sample sizes considered with the power curves (n; = 20, 30) the exact test is
more powerful than the LRT (see Figure 6.1). Also, it is clear from these power curves that detecting

a more accurate classification system (smaller BCy value), requires larger sample sizes.
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Table 6.1: Power when the misclassifications have equal weights. Detectable difference indicates
the difference of the assumed true BC value and BCy (BC > BCy). The power at a detectable

difference of zero is the estimated size of the hypothesis test.

Detectable Exact Hypothesis Test Likelihood Ratio Test
Difference n;=5 10 20 30 10 50 100 250

BCyp =0.30 0 (@) 0.000 0.045 0.017 0.051 0.037 0.031 0.027 0.026
0.01 0.000 0.049 0.017 0.060 0.045 0.040 0.042 0.051
0.05 0.000 0.070 0.033 0.120 0.071 0.110 0.168 0.349
0.10 0.000 0.128 0.088 0.270 0.128 0.317 0.554 0911
0.20 0.000 0.360 0.402 0.815 0.367 0.929 0.997 1.000
0.30 0.000 1.000 1.000 1.000 0.992 1.000 1.000 1.000

BCp =0.50 0 () 0.000 0.030 0.024 0.023 0.027 0.027 0.025 0.026
0.01 0.000 0.033 0.025 0.028 0.029 0.034 0.034 0.044
0.05 0.000 0.057 0.046 0.063 0.041 0.077 0.110 0.228
0.10 0.000 0.082 0.089 0.143 0.068 0.192 0.339 0.722
0.20 0.000 0.183 0.260 0.448 0.169 0.662 0.920 1.000
0.30 0.000 0.395 0.616 0.855 0.389 0.975 1.000 1.000
0.40 0.000 0.729 0949 0997 0.727 1.000 1.000 1.000
0.50 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

BCyp =1.00 0 (@) 0.023 0.038 0.037 0.044 0.036 0.027 0.026 0.023
0.01 0.021 0.038 0.041 0.050 0.039 0.031 0.034 0.039
0.05 0.028 0.051 0.063 0.088 0.054 0.062 0.089 0.155
0.10 0.040 0.080 0.099 0.152 0.080 0.132 0.235 0.500
0.20 0.066 0.156 0.223 0.368 0.153 0418 0.720 0.980
0.30 0.111 0.260 0.445 0.658 0.263 0.773 0.973 1.000
0.40 0.170 0.412 0.688 0.887 0.429 0.960 0.999 1.000
0.50 0.256 0.610 0.882 0978 0.617 0.997 1.000 1.000

BCyp=1.25 0 (@) 0.017 0.028 0.046 0.043 0.028 0.022 0.025 0.020
0.01 0.022 0.033 0.051 0.049 0.031 0.026 0.032 0.032
0.05 0.025 0.041 0.076 0.083 0.044 0.056 0.084 0.150
0.10 0.037 0.066 0.118 0.142 0.065 0.119 0.211 0.462
0.20 0.060 0.118 0.246 0324 0.129 0.375 0.661 0.969
0.30 0.106 0.210 0.444 0.599 0.220 0.705 0.947 1.000
0.40 0.160 0.343 0.672 0.819 0364 0.923 0.997 1.000
0.50 0.235 0.506 0.842 0947 0.520 0.992 1.000 1.000
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Table 6.2: Power when the misclassifications have a cost structure given by Cost;. Detectable
difference indicates the difference of the assumed true BC value and BCy (BC < BCy). The power

at a detectable difference of zero is the estimated size of the hypothesis test.

Detectable Exact Hypothesis Test Likelihood Ratio Test
Difference n;=5 10 20 10 50 100 250

BCy =0.10 0 (@) 0.000 0.000 0.039 0.000 0.037 0.028 0.023
0.01 0.000 0.000 0.057 0.000 0.070 0.073 0.118
0.05 0.000 0.000 0.248 0.000 0.451 0.747 0.990
0.10 0.000 0.000 0.984 0.000 1.000 1.000 1.000

BCp =0.20 0 () 0.000 0.043 0.020 0.034 0.027 0.027 0.023
0.01 0.000 0.047 0.023 0.044 0.045 0.055 0.082
0.05 0.000 0.100 0.079 0.094 0.240 0415 0.802
0.10 0.000 0.251 0.332 0.262 0.772 0.972 1.000
0.15 0.000 0.571 0.784 0.565 0.996 1.000 1.000
0.20 0.000 1.000 1.000 1.000 1.000 1.000 1.000

BCyp =0.35 0 (@) 0.010 0.013 0.024 0.045 0.025 0.026 0.032
0.01 0.012 0.019 0.024 0.051 0.042 0.045 0.070
0.05 0.022 0.028 0.070 0.095 0.169 0.278 0.595
0.10 0.045 0.083 0.210 0.183 0.518 0.817 0.995
0.15 0.087 0.190 0.466 0331 0.883 0.995 1.000
0.20 0.169 0.387 0.761 0.539 0.995 1.000 1.000
0.25 0.306 0.641 0956 0.773 1.000 1.000 1.000
0.30 0.573 0.887 1.000 0.950 1.000 1.000 1.000

BCp =0.45 0 () 0.011 0.023 0.020 0.045 0.026 0.023 0.026
0.01 0.012 0.028 0.025 0.055 0.040 0.043 0.056
0.05 0.029 0.056 0.066 0.096 0.149 0.241 0.529
0.10 0.051 0.122 0.177 0.169 0.446 0.739 0.983
0.15 0.082 0.224 0.381 0.291 0.804 0.979 1.000
0.20 0.145 0.389 0.637 0.445 0.974 0.998 1.000
0.25 0.240 0.604 0.865 0.636 0.998 1.000 1.000
0.30 0.374 0.800 0.978 0.813 1.000 1.000 1.000
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Table 6.3: Power when the misclassifications have a cost structure given by Cost,. Detectable
difference indicates the difference of the assumed true BC value and BCy (BC < BCy). The power

at a detectable difference of zero is the estimated size of the hypothesis test.

Detectable Exact Hypothesis Test Likelihood Ratio Test
Difference n;=5 10 20 10 50 100 250

BCy =0.20 0 (@) 0.000 0.000 0.038 0.000 0.040 0.031 0.030
0.01 0.000 0.000 0.043 0.000 0.051 0.045 0.057
0.05 0.000 0.000 0.094 0.000 0.156 0.215 0451
0.10 0.000 0.000 0.218 0.000 0.427 0.697 0.980
0.15 0.000 0.000 0.500 0.000 0.829 0.987 1.000
0.20 0.000 0.000 1.000 0.000 1.000 1.000 1.000

BCp =0.40 0 () 0.000 0.000 0.024 0.026 0.030 0.029 0.027
0.01 0.000 0.000 0.030 0.029 0.041 0.039 0.048
0.05 0.000 0.000 0.058 0.046 0.101 0.146 0.285
0.10 0.000 0.000 0.113 0.086 0.252 0.436 0.815
0.15 0.000 0.000 0.211 0.157 0.512 0.804 0.994
0.20 0.000 0.000 0.364 0.268 0.799 0.979 1.000
0.25 0.000 0.000 0.576 0.419 0.963 1.000 1.000
0.30 0.000 0.000 0.805 0.646 1.000 1.000 1.000

BCy =0.70 0 (@) 0.000 0.019 0.024 0.046 0.029 0.030 0.024
0.01 0.000 0.023 0.030 0.048 0.035 0.037 0.036
0.05 0.000 0.032 0.052 0.065 0.077 0.102 0.183
0.10 0.000 0.050 0.087 0.088 0.165 0.272 0.601
0.15 0.000 0.075 0.158 0.131 0.308 0.534 0.898
0.20 0.000 0.110 0.226 0.188 0.497 0.789 0.991
0.25 0.000 0.154 0.354 0.241 0.695 0.944 1.000
0.30 0.000 0.219 0.490 0319 0.855 0.989 1.000

BCp =0.90 0 () 0.011 0.018 0.020 0.043 0.028 0.026 0.023
0.01 0.010 0.022 0.023 0.046 0.033 0.035 0.037
0.05 0.018 0.032 0.049 0.060 0.072 0.093 0.162
0.10 0.024 0.048 0.081 0.087 0.147 0.242 0.525
0.15 0.032 0.074 0.125 0.129 0.270 0.467 0.851
0.20 0.046 0.117 0.190 0.168 0.435 0.711 0.980
0.25 0.056 0.156 0.288 0.213 0.616 0.890 1.000
0.30 0.070 0.213 0.417 0.265 0.771 0974 1.000
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Figure 6.1: Power curves for Exact (solid line) and Likelihood Ratio (dashed line) hypothesis tests

forn; =5 (red), n; = 10 (blue), n; = 20 (green), and n; = 30 (purple) at different BCy values.
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6.4.2 One-sided Hypothesis Test on the Difference of Two Bayes Cost Values.

For testing the difference of two independent classification systems, 179 = 0 is used. To
consider different detectable differences for the test, BC4 is fixed at 0.8 and BCp is varied
(BCp = (0.3,...,0.8)) to simulate the desired 7 values. Multinomial random variables are generated
assuming the misclassification probabilities are evenly distributed among the classes for all BC
values.

For the exact hypothesis test, the sample space for two independent, three-class classification
systems (Aga p , to consider BC4 and BCp simultaneously) becomes very large. Due to this large
sample space, the computational time is also large. Therefore, the test is run for small sample sizes
only and assuming all ¢;;p; = 1, for i # j (allowing for binomial distributions to be used instead of
multinomial distributions, in order to reduce the sample space). The results are presented in Table
6.4. Both the exact and LRT hypothesis tests perform similarly with respect to power and sample
size, although for n; = 10 the exact test is more powerful than the LRT. Also, both tests have size

<a.

Table 6.4: Power for multinomial distributed classes with equal weights for testing n < 0 .
Detectable difference indicates the difference of the assumed true value of BC4 — BCp (7 = 0).

The power at a detectable difference of zero is the estimated size of the hypothesis test.

Detectable Exact Test Likelihood Ratio Test
Difference n; =5 10 10 50 100 250

no =0 0 () 0.045 0.038 0.042 0.031 0.030 0.029
0.01 0.052 0.042 0.044 0.039 0.039 0.033
0.05 0.072 0.078 0.051 0.063 0.078 0.102
0.10 0.112 0.141 0.070 0.114 0.169 0.315
0.20 0.197 0.298 0.125 0.301 0.496 0.854
0.30 0.326 0.540 0.208 0.585 0.866 0.997
0.40 0.507 0.752 0.332 0.854 0.989 1.000
0.50 0.687 0910 0.493 0977 1.000 1.000
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6.5 Summary

Two nonparametric methods for testing hypotheses on BC were derived, an exact test for small
sample sizes and a LRT based on large sample theory. An interesting result from the simulation is
the similar performance of the exact and LRT hypothesis tests, especially in the hypothesis test on
a single BC value. Although the LRT is an approximate method, it performs similar to the exact
test with respect to power, even for the n; = 10 small sample size. Due to the discrete sample space
of BC, although the p-values found with the LRT test are approximate, they are accurate enough
to make the same decision as the exact test for some observed values of BC. This is demonstrated
for an example in Table 6.5, for testing different BC( values for a three-class classification system
with n; = 10 and BC = 0.1. In this example, although the LRT p-values are not the same as the
exact p-values, they result in the same decision (with respect to rejecting or failing to reject the null
hypothesis) for @ = 0.05. Consequently, the two methods at times have similar performance with

respect to size and power.

Table 6.5: P-values for exact and likelihood ratio tests for a three-class scenario for testing a single

BC, value with n; = 10 and BC = 0.1

BCy Exact p-value LRT p-value

0.3 0.184 0.127
0.5 0.029 0.011
1 8.34E-05 1.52E-05

1.25 2.89E-08 3.14E-07

Another result of interest is that when the misclassification weights are unequal, the likelihood
ratio test generally has slightly higher power than the exact test (although notably this comparison
is only made for n; = 10). The exact hypothesis test was implemented to calculate a p-value by
searching the null probability space, incremented by probabilities of 0.05. Therefore, a better search
method for finding these exact p-values may result in more precise (less conservative) values which

could increase the power of this test.
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The methods developed in this section provide flexible hypothesis tests which may be
used for testing the performance of a single classification system or for comparing performance
between classification systems. These hypothesis tests may be implemented despite differing
classification structures or nonparametric scenarios. The exact hypothesis tests perform well, but are
computationally difficult for increasing sample size (especially for tests on 7). The LRTs therefore
provide an approximate alternative to the exact test that is easier to implement computationally,

especially for larger n; .
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VII. Applications

7.1 Classifying Breast Cancer

The methods proposed in Chapter 3 are used to distinguish classes of the Breast Tissue data
set from the UCI Machine Learning Repository [4]. This data set consists of 106 observations
of nine continuous features derived from electrical impedance spectroscopy truncated spectrum of
breast tissue, which have been shown to discriminate breast tissue into six categories: Carcinoma
(CAR, n=21), Fibro-adenoma (FAD, n=15), Mastopathy (MAS, n=18), Glandular (GLA, n=16),
Connective (CON, n=14), and Adipose (ADI, n=22) [61]. By grouping the classes GLA, FAD, and
MAS together (denoted FAD+MAS+GLA) this becomes a four-class classification problem. These
three classes are grouped together because their discrimination is not considered important and they
cannot be discriminated using the available features [4, 61]. In [61], linear discriminant analysis
was used to distinguish between various subgroups of classes and it was determined that the low
frequency limit (Iy), area under the spectrum normalized by impedance distance between spectral
ends (AREAp, ), and the maximum of the spectrum (I P,,,,) were the best features for discriminating
between freshly excised breast tissue. However, it was also suggested that the length of the spectral
curve feature (P), may be able to simultaneously discriminate between the four derived classes of
interest [61]. This four-class diagnostic scenario is addressed using the derived parametric methods,
considering these four features as potential class discriminators (o, AREAp,, I Pyayx, and P).

Mean, standard deviation, median, and range of the four features for each class are presented in
Table 7.1. P appears to have small overlap between all groups when compared to the other features,
indicating it may perform well as a classifier. 1Py, and Iy have significant overlap between the
CAR group and at least one other feature (CON for /P, and FAD+MAS+GLA for Iy). AREAp,
has substantial overlap between all classes. The methods developed in Chapter 3 require normality
of the feature to be used for classification, however the mean and median data indicates that some
of the features may be skewed. The Shapiro-Wilk test is used to test this assumption and performs

well compared to other goodness of fit tests [32]. The assumption of normality is met for 1P,
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only, so a Box-Cox transformation is used to transform the other three features to normality where

Feature” — 1
Featureyansformed = f (7.1)

This results in 4 = 0.09 for AREAp, and 4 = -—0.31 for both Ip and P, found using the
powerTransform function in the car package in R [24, 52, 60]. After the transformation, all classes
pass the test for normality except for connective tissue with a p-value of .014 and .047 in [y and
P, respectively. As was demonstrated in Chapter 3, these slight deviations from normality are not
expected to have a large negative impact on the CI around BC, however the Cls around the optimal
thresholds may not perform well.

Prevalences are adjusted to account for the FAD+MAS+GLA class being the combination of
three classes, resulting in prevalences of: prap+mas+cra = % and pcarR = PcoN = PADI = % .
All four features (lop, AREAp,, IPnay, and P) are considered separately as potential features to
discriminate between the four classes (with equal cost given to all misclassification rates). For each

feature, BC4 and its 95% CI is determined using Equation 2.16 and the GCI presented in Section

3.3.3 where
Pyj = c1>(91 — ) (7.2)
Py = @(ez;j”j) - c1>(6'1 ;j’”) (73)
Py = q)(93;j“f) B cD(Hsz;jﬂj) 74
Py = @(“ ’;j93) (1.5)

and @ is the standard normal CDF [52]. The GCls are chosen for this application over the delta
method Cls due to the sample sizes in each class.

Because the CAR class may be considered the most important to detect, a second cost structure
is assumed which gives greater cost for misclassifying a CAR subject as any of the other classes and

also a higher cost on the class specific misclassification of any subjects from the other three classes
0944

as CAR. This results in a cost structure where Cost = [g 58 2] , assuming an ordering of the class

4940
means where yrapimas+Gra < HCAR < Hcon < Mapr (the cost structure is adjusted appropriately

for features with a different ordering). Once again the BC,4 value and associated 95% GCI for all
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four features are determined. The BC,4 values and 95% CI for each feature and cost structure are

given in Table 7.1.

Table 7.1: Descriptive statistics for features (broken into four classes: FAD+MAS+GLA, CAR,
CON, ADI) to classify breast tissue and each features’ BC4 values with 95% generalized confidence

intervals.

Feature Mean  Standard Deviation Median Range
P FAD+MAS+GLA  283.38 106.30 252.48 [124.98, 553.38]
CAR 479.97 93.19 477.55 [329.09, 656.77]
CON 1065.00 356.07 1121.19  [528.70, 1524.61]
ADI 2138.75 386.51 2068.05 [1475.37,2896.52]
BC4 equal costs 0.65 (0.49, 0.91)
BC,4 unequal costs 1.02 (0.75, 1.46)
IPy.c FAD+MAS+GLA  27.20 10.22 26.86 [7.97, 49.33]
CAR 64.53 18.85 69.39 [35.60, 96.56]
CON 72.96 34.45 70.10 [23.98, 143.09]
ADI 194.60 106.56 164.63 [51.85, 436.10]
BC4 equal costs 0.89 (0.73, 1.16)
BC4 unequal costs 1.32 (1.08, 1.74)
Iy FAD+MAS+GLA  259.73 104.22 245 [103.00, 544.65]
CAR 394.23 87.04 389.87 [269.50, 551.88]
CON 1212.86 386.47 1328.17 [649.37, 1724.09]
ADI 2052.05 342.49 1974.56  [1600.00, 2800.00]
BC4 equal costs 0.77 (0.58, 1.04)
BC4 unequal costs 1.21 (0.90, 1.63)
AREAp, FAD+MAS+GLA  10.25 6.60 9.19 [2.76, 33.60]
CAR 32.05 9.28 31.30 [15.94, 44.90]
CON 14.00 10.77 14.77 [1.60, 43.39]
ADI 50.78 33.93 44.59 [14.64, 164.07]

BC4 equal costs
BC,4 unequal costs

1.31 (1.16, 1.52)
2.14 (1.99, 2.62)

Using the BC4 values and their 95% Cls, discriminatory ability of each feature is determined
(equal or unequal costs). All features perform better than chance. It is clear that P and IP,,,, are
performing better than AREAp, for equal and unequal costs since the Cls around BC4 for AREAp,

are higher than the other two. Under the carcinoma weighted cost structure the CIs for P, 1Py,
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and I overlap and therefore these features may be considered equally good. However, for both cost
structures considered, P has the lowest estimate for BC4 and it also has the lowest upper bound on
the 95% CI, indicating the lowest maximum potential BC,4 value.

Choosing P to discriminate between all four classes with equal costs (with gurap+mas+cra <
HcAR < Hcon < papr) » the optimal thresholds (6] < 65 < 6) and their 95% GCls are 6=
402.21 (375.13, 441.14), 5= 643.20 (587.21, 717.27), and 6;=1540.50 (1387.497, 1665.80). The
contingency table resulting from applying this classifier at its optimal point to the data is presented
in Table 7.2. Choosing P to discriminate between all four classes with a higher cost on the
misclassification of carcinoma, the optimal thresholds and their 95% GCls are 67 = 380.53 (353.07,
409.69), 0; = 662.83 (596.61, 740.75), and 6; = 1540.50 (1397.89, 1675.78). The contingency
table resulting from applying this classifier to the data at its optimal point is also presented in Table
7.2. The two different cost structures result in different estimates for 6] and 6; , but not for ¢; ,

demonstrating the impact differing cost structures may have on determining the optimal thresholds.

Table 7.2: Contingency tables for classifying breast tissue using length of spectral curve (P).

Predicted Class True Class
FAD+MAS+GLA CAR CON ADI
Equal Costs FAD+MAS+GLA 0.90 024 0.00 0.00
CAR 0.10 0.71 021 0.00
CON 0.00 0.05 0.79 0.05
ADI 0.00 0.00 0.00 0.95
FAD+MAS+GLA CAR CON ADI
Unequal Costs FAD+MAS+GLA 0.80 0.14 0.00 0.00
CAR 0.20 0.86 0.29 0.00
CON 0.00 0.00 0.71 0.05
ADI 0.00 0.00 0.00 0.95

Using the thresholds which result from the cost structure which weights the misclassification
of carcinoma higher, the correct classification rate for carcinoma increases from 71% to 86%. This
results in 14% of CAR subjects being misclassified as FAD+MAS+GLA (also an abnormal state).

None of the carcinoma cases are being classified as either of the two normal classes (CON and
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ADI) when the weighted cost structure is used. In [61], linear discriminant analysis was used
for the classification of subgroups of the six classes. Using this method, more than one feature
may be considered at a time for discrimination. When discriminating only between two classes,
CAR and FAD+MAS+GLA, they found two features (AREAp, and IP,,,) resulted in the best
classifier. Using this linear discrimination they had approximately the same correct classification
rate for CAR (86.36%) as we observed. However, our diagnostic tests are simpler (depend on
one feature using simple cut-offs between classes) and simultaneously classifies between all four
classes. If distinctions between only CAR and FAD+MAS+GLA were of interest, higher correct
classification rates may potentially be achieved using other features. Using linear discriminant
analysis, the false negative rate may be altered by adjusting boundaries for a single class of interest,
however costs for all decisions can not be accounted for a priori. Finally, the resulting classification
rates for the connective tissue group are the worst, which may be a result of this group’s departure
from normality.

The CIs around BC reflect the uncertainty in each feature’s ability to classify due to the
variation of the data. Notably, as observed from the simulation results, the CI on BC is more
robust than the Cls on the optimal thresholds for transformed data in the Box-Cox family (as in
this application). Here, constructing a CI on BC allows the researcher to decide on the best feature
(or test). In this study, P was found to be the best single feature for classifying breast tissue.
Further study may be conducted in order to verify the optimal thresholds to implement this feature

in practice for diagnosis.
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7.2 Classifying Chronic Allograft Nephropathy

After kidney transplant (KT), chronic allograft nephropathy (CAN) is one of the prevalent
factors leading to renal transplant failure, yet its progression is still not well understood.
Biopsy is a means of determining if a patient has CAN, however it is of interest to determine
methods for detecting progression towards CAN after KT which are less invasive. Due to the
inflammatory response generated by tissue damage associated with CAN, it has been suggested
that proinflammatory cytokine markers, such as the transforming growth factor-81 may provide
an early indication of potential allograft loss [48]. Mas et. al. conducted a study to evaluate
gene panel mRNAs in urine samples for their usefulness as a non-invasive tool for evaluating
graft function [37]. This study suggested that the biomarkers transforming growth factor-81 (TGF-
B1), angiotensinogen (AGT), and epidermal growth factor receptor (EGFR) (all measurable mRNA
levels in urine) could be useful as early predictors of allograft function [37]. There were 32 normal
kidney function patients (NKF) , 18 normal kidney function with proturina patients (NKF+, a
progression towards CAN), and 14 CAN patients six months post transplant examined in their study.
Descriptive statistics of the three biomarkers within each diagnostic state are presented in Table 7.3

with a more detailed description of all the markers originally considered found in [37].

Table 7.3: Descriptive statistics of three features (broken into three classes: NKF, NKF+, CAN) to
classify kidney function.

Feature Class Mean Standard Deviation Median Range
AGT NKF  15.47 16.02 8.02 [1,64]
NKF+  4.76 6.30 2.90 [0.11,24.25]
CAN  4.63 3.44 4.15 [0.05,9.85]
TGF -1  NKF 1.56 1.22 1.37 [0.13,6.06]
NKF+ 32.75 128.85 1.04  [0.33,548.75]
NKF+'  2.39 4.58 0.93 [0.33,19.70]
CAN 531 5.06 3.26 [1.23,19.70]
EGFR NKF  15.41 15.34 9.71 [1,64]
NKF+ 7.12 12.51 4.01 [0.11,51.98]
CAN 423 3.27 3.65 [0.05,9.85]

+These values exclude the extreme observation where TGF-81 = 548.74.
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Potential multi-class classifiers were evaluated in [57] using volume under the surface (VUS)
of the ROC manifold. The highest VUS (best classification performance) resulted from a classifier
which simultaneously utilized both the AGT and TGF-#1 biomarkers, splitting the two dimensional
parameter space into regions for classification using arrays. However, the mathematical complexity
of this classifier makes it hard to implement.

Instead, a simplified version of the classifier in [57] with practical rules using thresholds for
the observed values of AGT and TGF-£1 may be used. Further, comparisons between different
classifiers utilizing such rules, with varying levels of complexity are made. First, Classifier 1 is
a simpler classifier, utilizing single threshold values on the two biomarkers for TGF-G1 and AGT,
respectively (6 = (61, 6)):

Classifier 1:

Assign patient i to

class 3 (CAN) if xrGr-gi > 01

class 2 (NKF+) if x7gr-p; < 01 and xa67,i < 62

or class 1 (NKF) otherwise.
This classifier is plotted in Figure 7.1 (top) using the optimal threshold values which were found
to minimize the empirically estimated BC using a simple grid search. These threshold values
associated with the minimum BC (equal costs and prevalences are assumed for all misclassification
outcomes) are 6 = (2.55,3.65) . This classifier is represented with vertical and horizontal lines and
has the advantage of only requiring two threshold values. For example, a subject whose TGF-£1 is
2.4 and an has AGT of 3.1 would be classified with NKF+ and a subject whose TGF-£1 is greater
than 2.55, regardless of their AGT value, would be classified with CAN. Classifier 1 correctly
classified 26 of 32 patients as NKF, 9 of 18 patients as NKF+, and 11 of 14 patients as CAN and has

a corresponding BC = 0.90 (see Table 7.4 for the full contingency table of classification outcomes).
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Figure 7.1: Plot of AGT vs. TGF-B1 with three-class classification systems (Top: Classifier 1,
Bottom: Classifier 2) for classifying patients as NKF (A), NKF+ (M), or CAN (). These plots
exclude the extreme observation in TGF-S1, where (TGF-81, AGT)=(548.74, 4.59), however this

point is included in the classification.
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A more complex variant of Classifier 1 is also proposed that allows for the horizontal and
vertical lines to have slope. This classifier, Classifier 2, considers non-rectangular regions in the
AGT and TGF-£1 plane and requires four thresholds (6 = (61, 6>, 03, 04)):

Classifier 2:

Assign patient i to

class 1 (NKF) if xar; > |04 X x7GF_p1.i — 0463 and xagri > [62 X xrGr_pri + 61|

class 3 (CAN) if xagri < [02 X XrGrpri + 01

or class 2 (NKF+) otherwise.
This classifier is plotted in Figure 7.1 (bottom) using the four optimal threshold values associated
with the minimum BC , 0 =1(2.925,1.45,1.0,5.0) . Classifier 2 correctly classified 28 of 32 patients
as NKF, 8 of 18 patients of NKF+, and 13 of 14 patients as CAN with a corresponding BC =0.75
(see Table 7.4 for the full contingency table of classification outcomes). Based on these point
estimates of BC, Classifier 2 is performing better than Classifier 1, demonstrating the potential

utility of non-rectangular regions in this instance.

Table 7.4: Contingency tables for classifying subjects into three groups with respect to chronic
allograft nephropathy.

Predicted Class True Class

NKF NKF+ CAN

Classifier 1 NKF 0.81 0.28 0.07
BC =0.90 NKF+ 0.03 0.50 0.14
CAN 0.16 0.22 0.79

NKF NKF+ CAN

Classifier 2 NKF 0.88 0.22 0.00
BC =0.76 NKF+ 0.06 0.44 0.07
CAN 0.06 0.33 0.93

This data consists of small sample sizes of the classes, non-normality of the biomarkers in
each class (which do not transform to normality), and the requirement to use two biomarkers
simultaneously in order to make the desired classifications. Therefore, the proposed fiducial

interval from Chapter 4 can be used to construct a CI around the optimal BC for both classifiers.
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Using the fiducial interval, a 95% CI for Classifier 1 is BC € [0.56, 1.29] and for Classifier 2 is
BC € [0.44,1.13]. Both CIs demonstrate that these classifiers are performing better than chance
because they do not span BC = 1.5. Although Classifier 2 reflects better classification for the CAN
diagnostic state (13 instead of 11 patients correctly classified), the overlap of these two ClIs indicates
that Classifier 2 may not perform better than Classifier 1 across all diagnostic states.

A nonparametric hypothesis test may be conducted to formally test whether the more complex
classifier (Classifier 2) is performing better than the simpler classifier (Classifier 1). This was
accomplished with the LRT developed in Section 6.3.2 for testing hypotheses on 7 . Based on the
simulation results in Section 6.4.2, the LRT is appropriate for this application because for sample

sizes of nj = 10 or more the LRT maintained a size less than «. For this application,

n= BCClassifierl - BCClassifierZ (7.6)

and the hypothesis being tested is

Hy:n<novs. H :n>ng (5.3)

Using the LRT, the p-value for this test is 0.51 (7 = 0.15). The exact hypothesis test was shown with
simulations in Section 6.4.2 to have higher power than the LRT for tests on 1 . However, although
applying the exact test here might result in a slightly smaller p-value, the difference in p-values
would not be enough to change the decision of the test at a significance level of 0.05. Therefore,
the null hypothesis is not rejected and there is not enough evidence to conclude the more complex
classifier is performing better than the simpler classifier.

This application demonstrates the use of nonparametric inference methods on BC for a
classifier using thresholds for a pair of biomarkers. Future work on associating the inflammatory
response with diagnostic states leading to CAN, may utilize these methods to make comparisons
between combinations of alternate classifiers (e.g. random forests) and biomarkers to determine
that which best aids diagnosis of allograft function post transplant. This demonstrates an important

use of flexible inference methods for BC.

132



VIII. Conclusions

Performance of classification systems at their optimal point is of great importance for
classification methods. The commonly employed Youden index allows for summarizing a
classification system’s performance at its optimal thresholds, as the sum of correct classification
rates. Bayes Cost, which minimizes misclassification rates instead, has been shown to be a more
flexible metric for characterizing performance of a classification system due to its ability to allow
for any costs and prevalence to be placed on all class specific misclassifications. In fact, due to the
flexibility of BC, the methods developed in this dissertation may also be used for inference on J.

Although estimating BC and the optimal thresholds is of interest, quantifying the uncertainty
in a classification system’s performance is also of great practical use, especially if the classification
system is not already determined, or if new or varying tests require comparison. Therefore, this work
has developed new CI and hypothesis test methods for BC under parametric and nonparametric
frameworks. Cls for k > 3 classes were limited in the literature, and previous to this work,
hypothesis tests had not been developed. Under parametric scenarios, the generalized inference
methods were shown with simulation to outperform the inference methods which utilized the delta
method. For nonparametric settings, exact inference methods were derived which were developed
with the fiducial argument. These methods may require large computational time, and therefore a
likelihood ratio test was also developed which may be used as an approximate alternative to the
exact hypothesis test when sample sizes are large enough. The methods which have been proposed
are possible for any finite number of outcome classes.

BC can incorporate any cost structure on the correct and incorrect classification rates. However,
it is possible to pick cost structures that would result in no optimal solution for the classification
system [65]. Therefore, costs should be chosen with realistic concerns in mind. If costs reflect truth
and no solution exists for the classification system, then the costs must be adjusted if possible, or
more ideally, a better system found which can allow for the necessary cost structure.

Future work may consider more efficient methods for calculating the exact fiducial interval

bounds as well as computing exact p-values, therefore conserving computational time and making
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the implementation of the exact methods easier. Also, the GCI performed well for a classification
system with a single feature that is independently and normally distributed for each class. Therefore,
it may be of interest to consider a generalized approach for inference on BC when the feature used
for classification is not normal (ex. gamma, chi square, mixtures, etc.). Finally, this work has
assumed fixed prevalences on each class. However, it is possible that the prevalence of a class
is not known explicitly. Future work may consider inference on BC when the prevalence of each
class follows a known distribution to consider a possible range of prevalence values. Under this
framework, Bayesian methods may be employed to determine properties of Bayes Cost as well as

corresponding credible sets for Bayes Cost and the optimal thresholds.
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Appendix A: Mathematical Derivations and Support
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A.1 Asymptotic Distribution of Sample Mean and Variance
— d
In order to show (X, S2) — mvn , some necessary theorems and definition are presented first.
Definition 8 (Converges in Probability).

A sequence of random variables, X1,X», ..., converges in probability to a random
variable X if for every € > 0, lim,o P(X, — X| = €) = 0 or, equivalently,
lim,,e P(1X,, — X| <€) =1/[12, p. 232]

Theorem 9 (Central Limit Theorem (CLT)).

Let X1,X5, ... be_a sequence of iid random variables with EX; = u cind 0 < VarX; =
0% <. Define X,, = (1/n) 3.7, X; . Let G,(x) denote the cdf of (X, —p)/o . Then,
forany x, —o0o < x < 00,

X
1 2
lim G,(x) =f ——e 24y
n—oo " —00 V27T

that is, \/ﬁ()_(n — w)/o has a limiting standard normal distribution. [12, p. 238]
Theorem 10 (Slutsky’s Theorem).

If X,, — X in distribution and Y, — a , a constant, in probability, then
a. Y, X,, — aX in distribution
b. X, + Y, — X + ain distribution. [12, pg. 239-240]

Theorem 11.

Let X1,X3,...,beiid f(x|0), let @ denote the MLE of 8, and let 7(6) be a continuous
function of 0 . Under the regularity conditions [. .. ] on f(x|0) and, hence, L(0 | x) ,

Valr(6) - 7(6)] = n[0, v(6)]
where v(0) is the Cramér-Rao Lower Bound. That is, T@) is a consisten and
asymptotically efficient estimator of 7(0) [12, pg. 472]
Regularity conditions are presented in Section A.5, and are assumed for the normal distribution.
- d
From the CLT it is clear that X,, — n[y, o%/n] . To see that the sample variance (S ,21) also has a
2

.. .. . — d —
limiting normal distribution first note from Theorem 11 that \/ﬁ[oﬁ —0%] - n[0, v(c?)] , where T

is the Maximum Likelihood Estimator (MLE) of o and

U — n-1
o2 = - Z;(X,. ~X,)? = Tsﬁ (A1)
=
Also, it is clear that
limP( WEﬁ—o <e)=1 (A.2)
n—oo n—
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which implies from Definition 8 that n‘f’{ o2 2 0. Now consider,

n—1
no__ 1 _ n _
= \/ﬁ(n_laﬁ—n_lffﬁ—ol)+n_la'z
o n _
= V(72 - o)+ n‘f_laﬁ (A3)

o d
Let X, = vn (o2 - 02 N =X, +Y, 5

n[0, v(o®)] + 0 = n[0, v(c?)] .

)andY

Finally, since X,, and S2 are indpendent ([12, p. 218]), their asymptotic joint distribution is
simply the product of their asymptotic normal marginals, which is the bivariate normal pdf with

— d
correlation, p , of zero. Therefore, (X, , S ﬁ) — mvn[(u, o), (2 /n,v(0?))] .

A.2 Derivation of partial derivatives of three-class Bayes Cost with respect to all distribu-

tional parameters.
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A.3 Partial derivatives of four-class Bayes Cost with respect to all distributional parameters.
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A.4 Wald and Log Wald CI for Bayes Cost

The Wald method for constructing Cls is common and easily applied for large sample sizes,

though may not perform as well as other methods. Developed with the large sample normality of

maximum likelihood estimators (MLES), the statistic

(A.12)

is approximately standard normal when 8 = 6y [3, p. 11],[70]. The (1 — @)100% Wald CI is then

found as

0+71_3 XS5 (A.13)

Although the Wald CI is easy to implement, it performs poorly for binomial probabilities with

respect to coverage [2]. Despite this, the Wald CI is considered for BC as it is easily computed and

a good place to start for baseline comparison of newly developed methods, and may perform better

for the sum of binomial/multinomial probabilities (i.e. BC) rather than for binomial probabilities

directly.

A.4.1 Bayes Cost for two-class classification system.

Consider a two-class classification system with results tabulated in a contingency table as in

Table 2.3. Class one has ny = Xjj; +X»|; observations and class two has ny = Xy +Xpp observations

(with ny and ny fixed). The outcomes from each class are mutually exclusive and independently
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distributed, and for each observation in a class, the classification system labels each observation as
only one of the two possible outcomes. No distributional assumptions on the feature or features used
for classification are made. In [76], J is defined as the maximum of the sum of correct classification

rates minus one, which can be written as

X X
J:max[il+i2—1] (A.14)
0cO ni ny

where Xjj; and Xp; are the random variables representing the number of observations correctly
classified for a vector of thresholds § € ® . Bayes Cost, which is defined to minimize the
misclassification rates instead of maximizing the correct classification rates, can be used similarly.
In the nonparametric framework, BC (with equal cost and prevalence multipliers, assumed to equal

one) may be written

BC = min
0O

— +
n na

[qu @] (A.15)

where X5 and X|)p are the random variables representing the misclassified observations fora @ € © .
The expected value and variance of BC defined in Equation A.15 is determined using properties of

the binomial distribution.

E(BC) = E()ﬂ + @)

ni np

1 1
= —EXy1) + —E(X1p)
ni n»

_ Pyi(0) xm N P112(0) X ny
B ni ny»

= P21(0) + P12(6) (A.16)

Xy X
Var(BC) = Var(ﬂ + ﬂ)

ni nz

1 1
= —2Var(X2|1) + —zVar(X”z)
n n
1 2
_ P21(0) X P1(0) X ny N P11p(0) X Pyp(0) X ny
n n
_ P21(0) X Py1(0) N P112(0) X P2p(6)

ni np

(A.17)
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where P;;(8) is the true probability of classifying class j as class i for a given § € © and n; is the
total number of observations sampled from the j” class. Using the MLEs for P;;(6) (from the

binomial distribution presented in Section 2.7.1), BC and the variance of BC are estimated

== X X2
pc="21 212
n n

(A.18)

X|1X21  X1pX2p
(m)? (m)?

For greater utility, BC may be defined with prevalences on classes and different costs on

Var(BC) =

(A.19)

misclassification errors [58, 65] such that

L Xon Xip
BC = min Cup1t— +tCcippr—— (A.ZO)
6O ni np

where ¢;; is the fixed cost associated with misclassifying class j as class i and p; is the fixed

prevalence for the j* class. The expected value and variance of BC defined in Equation A.20 is

E[BC] = pic1 Py1(8) + pacipP112(0) (A.21)

5 P112(8) X Pp(0)

Var|BC| = d 1 [7]
a [B ] = (plCz'l)ZM
! ny

(p2c1p2) (A.22)

Once again, using the MLEs for the binomial proportions P;;(0) , BC and the variance of BC are

X112

— X211
BC = picoyy— + pacip— (A.23)
ny ny
—— X111 X211 X112X2]2
Var(BC) = (prean =7 + (paci) = 5~ (A.24)

1 2

A.4.2 Bayes Cost for a k-class classification system.

Consider a classification system with three or more classes where the diagnostic outcomes may
be tabulated in a contingency table as in Table 2.4, for a given 8 € ® . Once again, no distributional
assumptions on the feature or features used for classification are made. For the three-class example,
the first class has n; = xq;1 + x2;1 + x3)1 observations, the second class has ny = x1p + x2p + x3p2,
and the third class has n3 = xj3 + xp53 + x3;3 observations (where n1,n2, and n3 are all assumed
fixed). The outcomes from the classes are mutually exclusive with independent distributions and
the classification system labels each observation as only one of the three (or & for k classes) possible

outcomes. Therefore, the number of outcomes in each diagnostic state in a single class (or column
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in the contingency table) are distributed multinomial (see Section 2.7.2). Similar to the two-class

classification system, BC is defined with costs and class prevalence multipliers:
3 3 X
- mi .
BC = min > Z cipi— (A.25)

The expected value and variance of BC is determined directly from the properties of the
multinomial distribution, taking into account the covariances between outcomes within the same

class. Therefore,

3 3
EBC)= " cipiPyj(6) (A.26)
i
and
313 )2 2p% 3
(ciijpj) p
Var(BC) = )’ Z( T py0) x (1 —Pi,-<0>>] ~ [ ewPa o) (A27)
j=11i=1 J 7=l
1#] 1#]

The MLEs for the multinomial distribution are used to estimate BC and the variance of BC as

follows
3 3
_ .
BC = Z Z ci;p ,n—" (A.28)
i=1 j=1 J
1#]
and
313 Y2 X g ., 2p% 3 -
= (ciijpj)” X xij Xilj P; Xi|j
Var(BC) = Z Z — (- n—j) o ]—[ S (A.29)
j=11i=1 J i=l
1#] 1#]

Equation A.25 can be generalized for k classes as [58]
k .
BC = min ciijpj—2 (A.30)
> Yieun

Further, BC and Var(EZ’ ) for any k-class BC is found similar to Equations A.28 and A.29 using the
mean, variance, and covariance of multinomial random variables. Although an equivalence between
the optimal threshold for the two-class BC and the GYI optimal threshold exists (see Theorem 3,
Section 2.5.2), for k > 3 classes this equivalence of optimal thresholds does not universally hold,
specifically when the costs of misclassification within a single class or between classes are not

equal [58].
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A.4.3 Wald and Log Wald Confidence Intervals.

A (1 — a)100% Wald CI for the k-class BC (k =2,3,...)1s

BC = Z1_3)+/Var(BC) (A.31)

where the BC and Var(BC) are found nonparametrically as in Sections A.4.1 and A.4.2. Since BC
is bounded above zero, a CI around the natural logarithm of BC is also considered in order to assure

that the CI greater than zero [41, p.163]. The (1 — @)100% Wald CI around the log of BC is
10g(BC) + z4/2 X Var(log(BC)) (A.32)
Then the (1 — @)100% log Wald CI for BC is
BC X exp|+za/2 X Var(log(BO))| (A.33)
where the delta method is used to approximate Var(log(EZ’ )) as

— 2
Var(log(BC)) ~ (MLEC))

_ 1 _
Var(BC) = — Var(BC) (A.34)
BC
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A.5 Regularity Conditions
Regularity conditions required for Theorem 8 are given in [12, p.516], listed below. These
conditions are assumed for the normal and multinomial distributions, which are exponential family

distributions.

(A1) We observe X1, ..., X, where X; ~ f(x | 0) are iid.

(A2) The parameter is identifiable; that is, it  # 6" , then f(x | 0) # f(x | &).

(A3) The densities f(x | ) have common support, and f(x | 6) is differentiable in 6 .
(A4) The parameter space 2 contains an open set w of which the true parameter value
6o is an interior point.

(A5) For every x € X, the density f(x | 6) is three times differentiable with respect to
6 , the third derivative is continuous in 6 , and f f(x | 6)dx can be differentiated three
times under the integral sign.

(A6) For any 8y € Q, there exists a positive number ¢ and a function M(x) (both

of which may depend on 6p) such that |a%log f(x| 6)| < M(x) for all x € X,

Bp—c<6<6y+c,with Eg, [M(X)] < oco.
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B.1 Parametric Confidence Interval Simulation Tables

Table B.1: Coverage probability and length for parametric 95% Cls around BC under equal costs
and three classes with a normally distributed feature.

BC;

Delta

GCI

BCa

BP

AN

Cov

Len

Cov

Len

Cov

Len

Cov

Len

Cov

Len

Normal
g3 = 1

10

50

100

250

1.23
0.91
0.63
0.42
0.27

92.60
91.98
91.78
91.02
90.04

0.70
0.69
0.65
0.57
0.46

96.13
96.03
96.07
95.83
95.47

0.67
0.68
0.65
0.60
0.52

88.20
89.78
89.88
89.42
89.36

0.63
0.63
0.58
0.51
0.41

90.26
89.36
87.52
85.24
83.12

0.68
0.66
0.58
0.48
0.37

83.82
85.54
85.16
84.66
84.98

0.68
0.66
0.58
0.47
0.37

1.23
091
0.63
0.42
0.27

94.80
94.78
94.44
94.02
94.50

0.32
0.32
0.30
0.26
0.21

95.63
95.70
95.77
95.43
95.50

0.32
0.32
0.30
0.26
0.22

94.48
94.46
94.14
94.12
94.00

0.32
0.31
0.29
0.26
0.21

94.42
94.28
93.64
93.08
92.58

0.32
0.31
0.29
0.25
0.20

93.24
93.52
93.00
93.20
93.20

0.32
0.31
0.29
0.25
0.20

1.23
091
0.63
0.42
0.27

94.56
94.48
95.12
94.72
94.70

0.23
0.23
0.21
0.18
0.15

95.47
94.97
94.93
94.73
94.57

0.23
0.22
0.21
0.19
0.15

94.30
94.46
94.22
94.12
94.12

0.23
0.23
0.21
0.18
0.15

94.44
94.26
93.84
93.66
93.74

0.23
0.22
0.21
0.18
0.15

93.48
93.60
93.80
93.88
93.60

0.23
0.22
0.21
0.18
0.15

1.23
0.91
0.63
0.42
0.27

95.04
94.82
94.76
94.70
94.66

0.14
0.14
0.13
0.12
0.09

95.20
95.30
95.03
94.77
94.80

0.14
0.14
0.13
0.12
0.10

94.98
94.86
94.72
94.54
94.36

0.14
0.14
0.13
0.12
0.10

94.86
94.58
94.16
94.24
94.24

0.14
0.14
0.13
0.12
0.09

94.90
94.88
94.42
94.62
94.52

0.14
0.14
0.13
0.12
0.09

Normal
o3 =2

10

50

100

1.23
0.91
0.63
0.42
0.27

92.44
91.66
91.38
90.74
90.20

0.76
0.74
0.67
0.58
0.47

96.33
96.57
96.30
96.27
96.30

0.73
0.73
0.69
0.62
0.52

90.24
91.44
91.02
90.08
89.38

0.72
0.70
0.63
0.53
0.43

89.86
89.52
87.78
85.96
83.74

0.74
0.70
0.61
0.50
0.38

87.48
86.74
85.88
85.10
85.18

0.74
0.70
0.60
0.49
0.37

1.23
0.91
0.63
0.42
0.27

94.54
94.36
94.04
93.78
93.40

0.35
0.34
0.31
0.27
0.21

95.43
95.73
95.73
95.83
95.57

0.35
0.34
0.31
0.27
0.22

94.74
94.40
94.26
94.14
93.92

0.35
0.34
0.31
0.26
0.21

94.38
94.22
93.82
93.44
92.90

0.35
0.34
0.30
0.26
0.20

93.80
93.54
93.62
93.12
93.34

0.35
0.34
0.30
0.26
0.20

1.23
0.91
0.63
0.42
0.27

95.08
95.34
95.02
94.86
94.74

0.25
0.24
0.22
0.19
0.15

95.07
95.20
95.10
95.20
94.90

0.25
0.24
0.22
0.19
0.15

94.30
94.38
94.40
94.30
94.26

0.25
0.24
0.22
0.19
0.15

94.18
94.24
94.04
94.02
93.60

0.25
0.24
0.22
0.19
0.15

94.18
94.02
94.26
94.10
94.20

0.25
0.24
0.22
0.19
0.15

156

Continued on next page



Table B.1 — continued from previous page

Delta GCI BCa BP AN

nj BC; Cov Len Cov Len Cov Len Cov Len Cov Len

250 1.23 95.12 0.16 95.17 0.16 9494 0.16 9488 0.16 9486 0.16
091 9502 0.15 9517 0.15 9484 0.15 94.66 0.15 94.86 0.15
0.63 94.68 0.14 9507 0.14 9478 0.14 9472 0.14 94.68 0.14
042 9490 0.12 95.13 0.12 9452 0.12 9428 0.12 9458 0.15
027 94.68 0.10 9507 0.10 9446 0.10 9452 0.09 94.60 0.10

Normal 10 1.23 9228 0.77 9643 0.75 91.84 0.75 9040 0.76 89.28 0.76
o3 =4 091 92.02 0.74 96.77 0.75 93.00 0.73 90.50 0.72 87.78 0.72
0.63 9156 0.67 9690 0.70 9226 0.65 88.94 0.62 86.68 0.62
042 9098 0.58 96.70 0.62 91.36 055 86.96 0.50 85.60 0.50
0.27 9050 047 96.80 0.52 89.88 044 84.56 0.38 8562 0.38

50 123 9436 036 9570 035 9478 036 9422 035 94.00 0.36
091 94.12 034 9553 034 9486 034 9452 034 9390 0.34
0.63 9398 031 9577 031 9462 031 94.06 030 93.64 0.31
042 93.60 0.27 9590 0.27 9424 027 9350 0.26 93.28 0.26
0.27 9326 0.21 9573 0.22 93.88 021 9282 0.20 9332 0.20

100 123 9528 025 9510 025 9430 025 94.16 025 9398 0.25
091 95.04 024 9517 024 9426 024 9440 0.24 9434 024
0.63 9486 0.22 9510 0.22 9440 022 9420 022 94.14 022
042 9462 0.19 9513 0.19 9426 0.19 94.02 0.19 9438 0.19
027 94.62 0.15 9530 0.15 94.04 0.15 9390 0.15 94.16 0.15

250 123 95.14 0.16 94.87 0.16 9472 0.16 9478 0.16 9496 0.16
091 95.06 0.15 9507 0.15 9490 0.15 9486 0.15 9498 0.15
0.63 9490 0.14 9497 0.14 9486 0.14 9470 0.14 9472 0.14
042 9476 0.12 9493 0.12 9480 0.12 9458 0.12 9490 0.12
027 94.68 0.10 9513 0.10 9474 0.10 94.74 0.09 94.82 0.10

GCI - generalized confidence interval; BCa - bias corrected and accelerated; BP - basic percentile;
AN - asymptotic normal; Cov - coverage; Len - length
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Table B.2: Coverage probability and length for 95% parametric Cls around BC under equal costs

and three classes with a non-normally distributed feature.

BC;

Delta

GCI

BCa

BP

AN

Cov

Len

Cov

Len

Cov

Len

Cov

Len

Cov

Len

Gamma

50

100

250

1.23
0.91
0.63
0.42
0.27

88.68
88.94
89.10
91.30
94.22

0.66
0.82
0.61
0.54
0.46

92.20
95.83
96.30
97.47
98.60

0.64
0.68
0.61
0.57
0.49

89.96
90.08
90.84
89.08
89.38

0.73
0.67
0.66
0.45
0.36

90.20
88.50
88.92
84.48
85.74

0.72
0.65
0.61
0.44
0.34

79.44
78.40
83.78
80.26
86.64

0.72
0.65
0.61
0.43
0.33

1.23
0.91
0.63
0.42
0.27

84.90
84.60
90.32
93.98
96.92

0.30
0.31
0.28
0.25
0.21

85.50
87.67
91.93
95.93
96.60

0.30
0.31
0.28
0.25
0.21

89.90
87.38
92.58
91.80
90.96

0.34
0.31
0.30
0.23
0.18

89.66
86.08
90.90
90.50
90.84

0.34
0.31
0.30
0.22
0.17

85.32
79.34
89.96
88.56
94.10

0.34
0.31
0.30
0.22
0.17

1.23
0.91
0.63
0.42
0.27

81.26
78.76
89.86
94.42
96.12

0.21
0.22
0.20
0.18
0.15

81.73
79.93
90.80
94.10
94.70

0.21
0.22
0.20
0.18
0.15

88.64
82.38
93.18
92.90
89.18

0.25
0.22
0.22
0.17
0.13

87.94
80.54
91.74
92.38
90.72

0.25
0.22
0.22
0.17
0.13

83.36
73.86
90.76
90.68
94.04

0.25
0.22
0.22
0.17
0.13

1.23
0.91
0.63
0.42
0.27

74.04
63.38
88.92
94.32
93.38

0.13
0.14
0.12
0.11
0.09

72.63
62.83
89.17
95.07
90.87

0.13
0.14
0.12
0.11
0.09

83.92
70.50
92.76
93.70
85.62

0.16
0.14
0.14
0.11
0.08

82.98
67.62
91.84
93.14
87.24

0.16
0.14
0.14
0.11
0.08

78.64
62.14
90.96
91.78
91.20

0.16
0.14
0.14
0.11
0.08

Gamma w/
Box-Cox

50

100

250

1.23
0.91
0.63
0.42
0.27

92.36
91.52
89.80
91.58
90.70

0.69
0.69
0.62
0.57
0.48

95.37
95.67
94.43
94.03
92.83

0.65
0.67
0.60
0.59
0.52

91.68
90.68
90.64
89.40
89.38

0.70
0.66
0.61
0.50
0.44

92.94
89.66
86.90
85.56
84.16

0.70
0.68
0.60
0.48
0.40

84.58
85.50
87.04
85.78
86.14

0.71
0.67
0.60
0.48
0.39

1.23
0.91
0.63
0.42
0.27

94.32
94.16
92.98
94.52
92.96

0.32
0.32
0.29
0.26
0.22

95.43
95.03
94.00
94.27
91.53

0.40
0.41
0.37
0.34
0.29

94.20
94.14
94.02
92.66
90.84

0.31
0.32
0.30
0.25
0.23

94.24
93.60
93.54
92.08
91.32

0.31
0.32
0.30
0.25
0.22

91.72
93.32
94.14
93.18
93.66

0.31
0.32
0.30
0.25
0.22

1.23
0.91
0.63
0.42
0.27

94.22
93.86
92.28
94.82
91.74

0.22
0.23
0.20
0.18
0.16

94.43
94.53
92.47
94.60
90.87

0.31
0.32
0.29
0.26
0.22

94.56
94.14
93.18
93.22
89.20

0.22
0.23
0.22
0.18
0.16

94.44
93.96
93.20
93.28
91.34

0.22
0.23
0.22
0.18
0.16

92.74
93.76
94.38
94.48
93.42

0.22
0.23
0.22
0.18
0.16

1.23

93.92

0.14

94.40

0.22

94.18

0.14

94.30

0.14

92.98

0.14
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Table B.2 — continued from previous page

n; BC3

Delta

GCI

BCa

BP

AN

Cov

Len

Cov

Len

Cov

Len

Cov

Len

Cov

Len

0.91
0.63
0.42
0.27

94.36
92.40
94.58
85.76

0.14
0.13
0.12
0.10

95.23
92.80
94.07
88.13

0.23
0.20
0.18
0.16

94.86
93.80
93.62
82.72

0.15
0.14
0.12
0.10

94.78
94.10
93.66
85.56

0.15
0.14
0.12
0.10

94.78
94.74
94.56
88.52

0.15
0.14
0.12
0.10

Normal 10 1.23
Mixture 0.91
0.63
0.42
0.27

87.84
90.14
87.54
87.94
84.08

2.39
0.75
0.67
0.57
0.44

93.20
95.23
94.63
94.80
93.67

0.72
0.75
0.69
0.61
0.49

86.60
91.08
89.90
89.26
89.36

0.68
0.73
0.66
0.56
0.47

87.28
88.64
85.40
83.78
81.78

0.70
0.73
0.62
0.52
0.43

79.32
85.58
81.64
83.92
83.04

0.70
0.73
0.62
0.51
0.41

50 1.23
0.91
0.63
0.42
0.27

79.42
94.16
88.54
91.12
88.88

0.35
0.35
0.31
0.26
0.21

82.73
95.07
91.50
93.60
91.30

0.35
0.35
0.31
0.27
0.21

82.56
94.22
92.72
94.14
94.20

0.35
0.35
0.32
0.28
0.24

81.42
93.90
90.62
92.28
91.94

0.34
0.35
0.32
0.27
0.23

76.36
93.52
87.38
91.80
92.28

0.35
0.35
0.32
0.27
0.23

100 1.23
0.91
0.63
0.42
0.27

67.10
93.90
85.48
91.20
90.56

0.25
0.25
0.22
0.19
0.15

68.17
94.40
88.07
93.13
91.50

0.25
0.25
0.22
0.19
0.15

70.50
94.78
90.94
94.56
94.26

0.25
0.25
0.23
0.20
0.17

69.44
94.64
89.20
93.74
93.58

0.25
0.25
0.23
0.20
0.17

64.82
94.76
86.36
93.08
93.94

0.25
0.25
0.23
0.20
0.17

250 1.23
0.91
0.63
0.42
0.27

33.94
94.30
77.50
90.98
90.94

0.16
0.16
0.14
0.12
0.09

35.73
94.60
81.10
92.83
91.70

0.16
0.16
0.14
0.12
0.09

37.67
93.86
83.18
93.64
94.58

0.16
0.16
0.15
0.13
0.11

37.14
93.84
81.04
92.78
93.72

0.16
0.16
0.15
0.13
0.11

33.96
94.38
77.88
91.92
94.04

0.16
0.13
0.15
0.16
0.16

GCIT - generalized confidence interval; BCa - bias corrected and accelerated; BP - basic percentile;

AN - asymptotic normal; Cov - coverage; Len - length
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Table B.3: Coverage probability and length for 95% parametric CIs around 6] under equal costs and
three classes with a normally distributed feature.

n;j BC3

Delta

GCI

BCa

BP

AN

Cov

Len

Cov

Len

Cov

Len

Cov

Len

Cov

Len

Normal 10 1.23
o3 =1 0.91
0.63
0.42
0.27

91.40
92.50
92.04
92.20
92.26

4.95
1.04
0.91
0.94
1.03

97.20
97.10
97.30
96.70
96.07

242
1.40
1.14
1.10
1.14

87.6
91.24
92.74
93.32
93.32

23.4
2.44
0.97
1.02
1.13

93.54
92.36
92.56
92.74
92.68

43.0
5.52
1.07
1.00
1.09

93.08
93.04
92.24
92.40
92.48

1.87
1.06
0.95
1.00
1.11

50 1.23
0.91
0.63
0.42
0.27

93.80
94.56
94.10
94.20
94.78

0.58
0.43
0.39
0.41
0.46

95.73
95.50
94.97
94.83
95.03

0.63
0.46
0.41
0.42
0.46

92.32
93.48
94.14
94.60
94.58

0.58
0.43
0.40
0.42
0.46

92.68
93.84
94.36
94.42
94.40

1.29
0.43
0.40
0.42
0.46

93.88
94.24
94.56
94.52
94.18

0.58
0.43
0.40
0.42
0.46

100 1.23
0.91
0.63
0.42
0.27

94.58
94.76
95.08
95.12
94.92

0.41
0.30
0.28
0.29
0.32

95.10
95.37
95.37
95.30
95.27

0.42
0.31
0.28
0.29
0.32

93.56
94.14
94.28
94.40
94.40

0.41
0.30
0.28
0.29
0.32

93.64
94.38
94.46
94.24
94.28

0.40
0.30
0.28
0.29
0.32

94.58
94.60
94.32
94.16
94.16

0.41
0.30
0.28
0.29
0.32

250 1.23
0.91
0.63
0.42
0.27

94.60
95.00
94.80
95.20
95.16

0.26
0.19
0.18
0.18
0.20

94.90
95.13
94.97
95.27
95.33

0.26
0.19
0.18
0.18
0.20

94.94
94.94
94.68
94.84
94.70

0.26
0.19
0.18
0.19
0.20

94.92
94.98
94.90
94.82
94.52

0.25
0.19
0.18
0.18
0.20

95.00
94.94
94.68
94.80
94.66

0.26
0.19
0.18
0.19
0.20

Normal 10 1.23
o3 =2 0.91
0.63
0.42
0.27

92.22
93.28
92.86
92.32
92.22

10.0
1.23
0.91
0.94
1.03

97.20
97.10
97.30
96.70
96.07

242
1.40
1.14
1.10
1.14

87.58
91.24
92.74
93.32
93.32

234
244
0.97
1.02
1.13

93.54
92.36
92.56
92.74
92.68

43.0
5.52
1.07
1.00
1.09

93.08
93.04
92.24
92.40
92.48

1.87
1.06
0.95
1.00
1.11

50 1.23
0.91
0.63
0.42
0.27

93.84
94.54
94.10
94.18
94.24

0.58
0.43
0.39
0.41
0.46

95.73
95.50
94.97
94.83
95.03

0.63
0.46
0.41
0.42
0.46

92.32
93.48
94.14
94.60
94.58

0.58
0.43
0.40
0.42
0.46

92.68
93.84
94.36
94.42
94.40

1.29
0.43
0.40
0.42
0.46

93.88
94.24
94.56
94.52
94.18

0.58
0.43
0.40
0.42
0.46

100 1.23
0.91
0.63
0.42
0.27

94.66
95.04
95.08
95.14
94.92

0.41
0.30
0.28
0.29
0.32

95.10
95.37
95.37
95.30
95.27

0.42
0.31
0.28
0.29
0.32

93.56
94.14
94.28
94.40
94.40

0.41
0.30
0.28
0.29
0.32

93.64
94.38
94.46
94.24
94.28

0.40
0.30
0.28
0.29
0.32

94.58
94.60
94.32
94.16
94.16

0.41
0.30
0.28
0.29
0.32

250 1.23

94.58

0.26

94.90

0.26

94.94

0.26

94.92

0.25

95.00

0.26
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Table B.3 — continued from previous page

Delta GCI BCa BP AN

nj BC; Cov Len Cov Len Cov Len Cov Len Cov Len

091 94.64 0.19 9513 0.19 9494 0.19 9498 0.19 9494 0.19
0.63 9480 0.18 9497 0.18 9468 0.18 9490 0.18 94.68 0.18
042 9520 0.18 9527 0.18 9484 0.19 9482 0.18 94.80 0.19
027 95.18 0.20 9533 0.20 9470 020 9452 020 94.66 0.20

Normal 10 1.23 92.14 113 9720 242 8758 234 9354 43.0 93.08 1.87
o3 =4 091 9328 124 97.10 140 9124 244 9236 552 93.04 1.06
0.63 9286 091 9730 1.14 9274 097 9256 1.07 9224 0.95
042 9236 094 96.70 1.10 9332 1.02 9274 1.00 9240 1.00
027 9222 1.03 9607 1.14 9332 1.13 92.68 1.09 9248 1.11

50 123 9384 0.58 9573 0.63 9232 058 9268 1.29 93.88 0.58
091 9454 043 9550 046 9348 043 9384 043 9424 043
0.63 94.10 039 9497 041 94.14 040 9436 040 9456 040
042 9420 041 9483 042 9460 042 9442 042 9452 042
027 9424 046 9503 046 9458 046 9440 046 94.18 046

100 123 94.68 041 9510 042 9356 041 93.64 040 9458 041
091 9504 030 9537 031 94.14 030 9438 030 94.60 0.30
0.63 9508 0.28 9537 0.28 9428 0.28 9446 028 9432 0.28
042 9512 029 9530 0.29 9440 029 9424 029 94.16 0.29
027 9492 032 9527 032 9440 032 9428 0.32 94.16 0.32

250 123 94.60 026 9490 026 9494 0.26 9492 0.25 95.00 0.26
091 94.64 0.19 9513 0.19 9494 0.19 9498 0.19 9494 0.19
0.63 9480 0.18 9497 0.18 94.68 0.18 9490 0.18 94.68 0.18
042 9520 0.18 9527 0.18 9484 0.19 9482 0.18 9480 0.19
027 9518 020 9533 020 9470 020 9452 020 94.66 0.20

GCIT - generalized confidence interval; BCa - bias corrected and accelerated; BP - basic percentile;
AN - asymptotic normal; Cov - coverage; Len - length
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Table B.4: Coverage probability and length for 95% parametric CIs around 65 under equal costs and
three classes with a normally distributed feature.

n;j BC3

Delta

GCI

BCa

BP

AN

Cov

Len

Cov

Len

Cov

Len

Cov

Len

Cov

Len

Normal 10 1.23
o3 =1 0.91
0.63
0.42
0.27

91.52
92.42
92.32
92.36
92.48

1.85
1.09
0.91
0.94
1.03

97.00
96.73
96.33
95.80
95.53

2.46
1.40
1.14
1.09
1.13

87.92
91.10
92.76
93.56
94.00

43.7
1.28
0.97
1.02
1.13

93.38
92.24
92.74
92.96
92.92

20.7
3.16
1.11
0.99
1.09

92.56
92.56
92.42
92.48
92.34

1.90
1.06
0.95
1.01
1.11

50 1.23
0.91
0.63
0.42
0.27

93.96
94.60
94.74
94.58
94.16

0.58
0.43
0.39
0.41
0.46

95.97
95.57
95.23
94.83
94.47

0.64
0.46
0.41
0.42
0.46

92.34
93.56
94.72
94.72
94.62

0.58
0.43
0.40
0.42
0.46

92.74
93.92
94.78
94.66
94.36

0.62
0.43
0.40
0.42
0.46

94.28
94.58
94.68
94.42
94.20

0.58
0.43
0.40
0.42
0.46

100 1.23
0.91
0.63
0.42
0.27

94.46
94.80
94.94
95.00
95.18

0.41
0.30
0.28
0.29
0.32

95.13
95.70
95.03
94.93
95.00

0.42
0.31
0.28
0.29
0.32

93.22
94.10
94.42
94.68
95.14

0.41
0.30
0.28
0.29
0.32

93.48
94.40
94.54
94.84
95.10

0.40
0.30
0.28
0.29
0.32

94.26
94.58
94.56
94.76
95.08

0.40
0.30
0.28
0.29
0.32

250 1.23
0.91
0.63
0.42
0.27

95.40
94.90
95.20
95.12
94.88

0.26
0.19
0.18
0.18
0.20

95.20
95.27
95.20
95.40
95.33

0.26
0.19
0.18
0.18
0.20

94.34
94.70
95.08
95.20
94.92

0.26
0.19
0.18
0.19
0.20

94.66
94.86
95.20
95.20
94.96

0.26
0.19
0.18
0.18
0.20

94.84
94.92
95.38
95.22
94.96

0.26
0.19
0.18
0.18
0.20

Normal 10 1.23
o3 =2 0.91
0.63
0.42
0.27

91.54
92.26
92.64
92.24
92.14

17.0
9.82
3.53
2.18
1.41

96.43
96.67
96.27
95.80
95.23

2.88
1.76
1.49
1.47
1.55

89.24
90.24
91.74
92.58
93.42

179
1.85
1.31
1.38
1.54

92.20
91.36
91.58
92.20
92.28

80.3
5.81
1.89
1.34
1.48

88.28
89.02
90.34
91.14
92.06

2.26
1.37
1.27
1.35
1.50

50 1.23
0.91
0.63
0.42
0.27

94.22
94.28
94.18
94.48
94.62

0.66
0.57
0.55
0.57
0.62

95.27
95.20
94.53
94.53
94.60

0.69
0.59
0.56
0.58
0.63

92.84
93.16
93.86
94.14
93.82

0.67
0.58
0.55
0.57
0.63

93.38
93.04
93.82
93.92
93.86

0.67
0.57
0.54
0.57
0.62

92.78
92.98
93.52
93.68
93.58

0.66
0.57
0.55
0.57
0.62

100 1.23
0.91
0.63
0.42
0.27

95.06
95.16
95.20
95.26
95.34

0.47
0.41
0.39
0.40
0.44

94.97
95.07
94.90
94.73
94.93

0.47
0.41
0.39
0.41
0.44

93.76
93.90
94.58
94.80
95.26

0.47
0.41
0.39
0.40
0.44

93.60
94.00
94.24
94.64
95.10

0.46
0.40
0.39
0.40
0.44

93.24
93.44
94.14
94.72
95.14

0.46
0.40
0.39
0.40
0.44

250 1.23

94.82

0.29

95.50

0.30

94.88

0.30

94.88

0.29

94.98

0.29
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Table B.4 — continued from previous page

Delta GCI BCa BP AN

nj BC; Cov Len Cov Len Cov Len Cov Len Cov Len

091 9486 026 9533 026 9524 026 9516 026 9520 026
0.63 95.18 0.24 9483 0.25 9522 025 95.14 024 9520 0.25
042 9524 025 9507 025 9550 025 9528 025 9508 0.25
027 95.08 0.28 9473 0.28 9520 0.28 95.04 0.28 9496 0.28

Normal 10 123 91.10 247 96.10 235 8930 14.7 90.66 11.4 8470 1.95
o3 =4 091 9146 641 9597 192 89.00 2.14 89.66 258 84.64 1.55
0.63 92.06 1.59 9593 1.84 90.30 1.65 90.16 1.69 87.00 1.54
042 9214 1.65 96.10 1.89 91.66 175 91.04 1.67 8894 1.66
027 9224 179 9560 2.02 9286 195 9196 1.84 90.04 1.85

50 123 9432 0.75 9523 0.78 9296 0.76 9290 0.74 92.14 0.74
091 9380 0.71 95.13 0.73 9286 0.71 93.00 0.69 91.84 0.70
0.63 94.18 0.71 9497 0.72 93.12 0.70 9346 0.69 9242 0.69
042 9420 0.73 9503 0.75 9330 0.73 9328 0.72 92.84 0.72
027 9434 0.78 95.07 0.80 9348 0.79 93,50 0.77 93.00 0.78

100 123 94.60 0.53 94.60 0.54 94.08 0.54 9338 053 9256 0.53
091 9500 0.50 9493 0.51 94.00 051 9356 050 9298 0.50
0.63 9528 0.50 9500 0.50 94.18 050 9392 049 94.00 0.50
042 9532 0.52 9493 0.52 9430 052 94.64 051 9422 0.51
0.27 9532 055 9487 056 9486 056 9494 0.55 94.78 0.55

250 123 95.06 034 9543 034 9496 034 9482 034 94.68 0.34
091 9482 0.32 9583 032 9494 032 9488 032 94.66 0.32
0.63 9516 032 9500 032 9466 032 9476 031 9478 0.32
042 9522 033 9490 033 9482 033 9480 0.32 9456 0.33
027 9510 035 9460 035 9458 035 9488 035 94.60 0.35

GCIT - generalized confidence interval; BCa - bias corrected and accelerated; BP - basic percentile;
AN - asymptotic normal; Cov - coverage; Len - length
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Table B.5: Coverage probability and length for 95% parametric CIs around 6] under equal costs and
three classes with a non-normally distributed feature.

BC;

Delta

GCI

BCa

BP

AN

Cov

Len

Cov

Len

Cov

Len

Cov

Len

Cov

Len

Gamma

50

100

250

1.23
0.91
0.63
0.42
0.27

54.30
55.28
55.44
72.24
72.18

1.67
4.66
1.76
1.87
1.87

65.33
65.33
64.50
74.67
74.67

276
2.76
2.84
2.18
2.18

55.14
55.14
55.26
81.78
81.78

1.77
1.77
1.81
2.48
2.48

53.56
53.56
53.84
80.20
80.20

1.80
1.80
1.84
245
2.45

83.40
83.40
83.58
85.88
85.88

1.78
1.78
1.81
2.38
2.38

1.23
0.91
0.63
0.42
0.27

1.58

1.58

1.58
37.30
37.28

0.71
0.71
0.71
0.87
0.87

2.37
2.37
1.97
33.10
33.10

0.75
0.75
0.74
0.89
0.89

1.94
1.94
2.08
56.52
56.52

0.94
0.94
0.93
1.43
1.43

1.64

1.64

1.80
62.30
62.30

0.91
0.91
0.91
1.37
1.37

6.88

6.88

7.02
74.84
74.84

0.92
0.92
091
1.37
1.37

1.23
0.91
0.63
0.42
0.27

0.00
0.00
0.08
15.88
15.92

0.49
0.49
0.49
0.62
0.62

0.07
0.07
0.03
14.53
14.53

0.50
0.50
0.50
0.62
0.62

0.28

0.28

0.18
30.18
30.18

0.67
0.67
0.67
1.06
1.06

0.06
0.06
0.08
37.08
37.08

0.64
0.64
0.64
1.02
1.02

0.48

0.48

0.48
45.58
45.58

0.64
0.64
0.64
1.02
1.02

1.23
0.91
0.63
0.42
0.27

0.00
0.00
0.00
1.00
1.10

0.31
0.31
0.31
0.39
0.39

0.00
0.00
0.00
0.73
0.73

0.31
0.31
0.31
0.39
0.39

0.00
0.00
0.00
4.16
4.16

0.42
0.42
0.42
0.70
0.70

0.00
0.00
0.00
6.38
6.38

0.41
0.41
0.41
0.68
0.68

0.00
0.00
0.00
8.10
8.10

0.41
0.41
0.41
0.68
0.68

Gamma w/
Box-Cox

50

100

250

1.23
0.91
0.63
0.42
0.27

89.02
84.24
78.60
91.12
89.10

2.11
3.13
242
2.19
2.17

95.10
94.77
91.47
95.93
94.57

63.7
122
567
2.59
2.55

88.90
84.64
78.18
91.64
89.84

1.62
1.52
1.43
2.39
2.35

87.68
82.14
74.60
88.96
86.00

1.65
1.63
1.64
2.38
242

93.50
91.56
89.60
91.40
90.74

1.64
1.62
1.63
2.38
241

1.23
0.91
0.63
0.42
0.27

94.06
73.76
37.12
86.80
73.68

0.73
0.68
0.60
0.94
0.92

94.93
75.60
40.90
87.67
74.30

0.79
0.73
0.66
0.97
0.95

93.94
71.58
33.72
88.82
74.98

0.75
0.69
0.63
1.00
0.99

92.88
65.70
28.64
85.58
70.62

0.74
0.69
0.65
1.00
0.99

94.18
75.70
43.46
89.24
79.46

0.74
0.70
0.65
1.00
1.00

1.23
0.91
0.63
0.42
0.27

94.12
53.18
10.20
79.14
53.36

0.51
0.47
0.43
0.66
0.65

94.97
57.20
10.13
79.27
51.47

0.53
0.49
0.44
0.67
0.66

94.26
52.32
10.04
81.88
56.88

0.52
0.48
0.43
0.71
0.70

93.74
46.16
7.44
79.00
53.04

0.51
0.47
0.44
0.71
0.70

94.38
55.18
13.26
82.44
60.14

0.52
0.48
0.44
0.71
0.70

1.23

93.32

0.32

93.67

0.33

93.88

0.32

92.80

0.32

93.76

0.32
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Table B.5 — continued from previous page

n; BC3

Delta

GCI

BCa

BP

AN

Cov

Len

Cov

Len

Cov

Len

Cov

Len

Cov

Len

0.91
0.63
0.42
0.27

15.38
0.10

57.02
15.76

0.30
0.27
0.42
0.41

16.27
0.17

57.07
15.10

0.30
0.27
0.42
0.41

15.40
0.20
61.22
18.26

0.30
0.26
0.45
0.44

12.74
0.10

58.58
16.74

0.29
0.26
0.45
0.44

16.22
0.22
61.94
19.82

0.30
0.27
0.45
0.44

Normal 10 1.23
Mixture 0.91
0.63
0.42
0.27

87.10
87.02
87.02
90.96
89.56

1.28
1.28
1.28
1.32
90.2

95.37
95.97
94.13
94.13
94.13

6.03
1.85
1.47
1.47
1.47

91.80
91.80
91.80
89.00
85.88

1.46
1.46
1.46
1.99
159

89.46
89.46
89.46
90.50
94.10

1.48
1.48
1.48
5.14
381

87.48
87.48
87.48
88.74
90.50

1.42
1.42
1.42
1.35
5.27

50 1.23
0.91
0.63
0.42
0.27

76.34
76.34
76.34
91.10
92.30

0.56
0.56
0.56
0.57
0.84

90.40
93.33
80.93
80.93
80.93

0.97
0.59
0.57
0.57
0.57

78.20
78.20
78.20
90.80
90.64

0.56
0.56
0.56
0.57
1.06

76.34
76.34
76.34
90.04
93.20

0.56
0.56
0.56
0.55
4.68

74.38
74.36
74.36
89.08
93.42

0.56
0.56
0.56
0.56
0.99

100 1.23
0.91
0.63
0.42
0.27

57.86
57.86
57.86
89.64
88.00

0.39
0.39
0.39
0.40
0.57

87.13
90.67
61.93
61.93
61.93

0.59
0.41
0.40
0.40
0.40

60.10
60.10
60.10
89.34
87.80

0.39
0.39
0.39
0.40
0.61

58.00
58.00
58.00
87.90
88.90

0.39
0.39
0.39
0.40
0.63

55.64
55.64
55.64
87.26
90.76

0.39
0.39
0.39
0.40
0.61

250 1.23
0.91
0.63
0.42
0.27

20.26
20.26
20.26
83.08
77.98

0.25
0.25
0.25
0.25
0.35

75.53
84.27
21.77
21.77
21.77

0.36
0.26
0.25
0.25
0.25

21.92
21.92
21.92
84.82
78.30

0.25
0.25
0.25
0.25
0.38

20.32
20.32
20.32
82.66
78.96

0.24
0.24
0.24
0.25
0.37

19.66
19.66
19.66
82.12
82.56

0.25
0.25
0.25
0.25
0.38

GCIT - generalized confidence interval; BCa - bias corrected and accelerated; BP - basic percentile;

AN - asymptotic normal; Cov - coverage; Len - length

165



Table B.6: Coverage probability and length for 95% parametric CIs around 65 under equal costs and
three classes with a non-normally distributed feature.

BC;

Delta

GCI

BCa

BP

AN

Cov

Len

Cov

Len

Cov

Len

Cov

Len

Cov

Len

Gamma

50

100

250

1.23
0.91
0.63
0.42
0.27

66.20
71.68
70.54
79.64
74.26

3.67
292
4.49
7.73
11.7

78.17
75.93
82.67
82.70
83.27

6.95
3.44
5.10
8.92
13.3

58.90
76.18
79.32
84.58
81.34

3.03
3.62
5.82
9.66
15.0

58.22
75.60
76.02
83.42
78.50

3.17
3.58
5.60
9.47
14.4

85.56
87.80
73.00
88.34
75.52

3.17
3.52
548
9.37
14.1

1.23
0.91
0.63
0.42
0.27

11.74
16.02
61.82
46.80
66.76

1.47
1.33
2.00
3.52
5.20

15.10
15.03
65.10
43.23
72.20

1.60
1.36
2.04
3.59
5.32

14.22
24.64
77.92
59.20
82.02

1.70
1.92
291
4.82
7.40

11.50
28.68
74.80
62.96
78.60

1.71
1.86
2.83
4.72
7.20

26.92
41.76
71.58
74.24
75.80

1.73
1.86
2.81
4.73
7.17

1.23
0.91
0.63
0.42
0.27

1.64
2.00
49.78
21.84
57.92

1.02
0.95
1.41
2.49
3.68

2.13
2.07
54.30
20.50
61.13

1.06
0.96
1.43
2.52
3.71

4.24
4.94
75.16
33.64
79.58

1.18
1.41
2.16
3.52
5.44

2.30
6.54
70.12
38.20
75.06

1.18
1.37
2.10
3.46
5.29

6.82
9.88
67.40
47.04
72.74

1.19
1.37
2.10
3.46
5.29

1.23
0.91
0.63
0.42
0.27

0.00
0.00
27.62
1.94
39.44

0.63
0.60
0.90
1.58
2.33

0.00
0.00
30.00
1.77
42.33

0.64
0.60
0.90
1.59
2.34

0.08
0.02
57.86
4.96
67.82

0.73
0.91
1.41
229
3.55

0.02
0.04
51.14
6.00
61.84

0.72
0.90
1.37
2.26
3.48

0.10
0.04
49.56
7.58
59.84

0.72
0.90
1.38
2.26
3.49

Gamma
w/ Box-Cox

50

100

250

1.23
0.91
0.63
0.42
0.27

89.58
88.90
90.02
91.32
90.92

3.65
3.06
6.92
8.27
17.3

92.60
95.07
93.30
95.23
94.77

999
3.89
7.14
9.61
18.0

84.64
90.44
90.84
92.16
92.32

2.85
3.33
7.41
9.02
18.6

85.46
87.54
92.56
90.68
92.32

3.03
3.35
7.63
9.03
18.7

92.92
91.80
87.66
91.94
90.56

3.02
3.35
7.63
9.07
18.8

1.23
0.91
0.63
0.42
0.27

94.76
78.50
88.38
90.76
92.00

1.42
1.31
3.00
3.63
7.50

95.13
79.50
90.40
91.93
93.00

1.56
1.36
3.00
3.70
7.51

93.42
81.14
89.94
90.72
91.70

1.42
1.42
3.07
3.79
7.55

92.98
78.84
91.30
89.84
93.08

1.41
1.42
3.09
3.78
7.58

94.64
81.94
87.54
91.94
90.82

1.42
1.42
3.10
3.80
7.61

1.23
0.91
0.63
0.42
0.27

94.06
64.18
84.88
86.44
89.60

1.00
0.93
2.11
2.56
5.28

95.03
66.17
86.93
86.23
90.43

1.05
0.94
2.11
2.58
5.29

93.20
68.18
87.02
87.32
90.26

0.99
1.01
2.17
2.67
5.37

92.56
66.26
88.42
86.06
91.26

0.99
1.00
2.18
2.66
5.37

93.98
68.76
84.46
88.54
89.04

0.99
1.01
2.18
2.68
5.39

1.23

93.70

0.63

94.20

0.64

93.24

0.62

92.90

0.62

93.38

0.62
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Table B.6 — continued from previous page

n; BC3

Delta

GCI

BCa

BP

AN

Cov

Len

Cov

Len

Cov

Len

Cov

Len

Cov

Len

0.91
0.63
0.42
0.27

31.34
75.20
74.76
84.10

0.58
1.33
1.62
3.34

34.57
75.07
74.57
83.50

0.59
1.33
1.62
3.34

35.56
77.96
76.52
85.40

0.63
1.38
1.69
3.41

34.16
79.12
75.28
86.48

0.63
1.38
1.68
3.40

35.74
75.46
77.96
83.86

0.63
1.38
1.69
3.42

Normal 10 1.23
Mixture 0.91
0.63
0.42
0.27

92.32
92.22
92.16
92.52
91.78

1.22
1.22
1.13
1.23
2.08

96.77
96.77
95.97
94.70
95.20

1.55
1.55
1.40
1.37
2.01

92.10
92.10
92.22
92.30
92.22

1.36
1.36
1.21
1.35
2.07

92.58
92.58
91.94
92.68
90.00

247
247
1.54
1.30
1.98

90.04
90.04
91.70
91.94
90.46

1.26
1.26
1.18
1.32
2.03

50 1.23
0.91
0.63
0.42
0.27

95.68
95.68
92.16
88.16
91.52

0.52
0.52
0.49
0.55
0.86

95.07
95.07
90.97
88.50
91.73

0.54
0.54
0.51
0.55
0.87

94.52
94.52
90.32
87.24
90.26

0.52
0.52
0.49
0.55
0.82

94.66
94.66
90.58
87.88
88.88

0.51
0.51
0.49
0.54
0.81

94.12
94.12
92.18
89.44
88.44

0.51
0.51
0.49
0.54
0.82

100 1.23
0.91
0.63
0.42
0.27

95.54
95.52
87.54
82.02
86.82

0.37
0.37
0.35
0.38
0.61

95.70
95.70
86.80
79.90
88.23

0.37
0.37
0.35
0.39
0.61

94.88
94.88
85.44
78.58
85.70

0.36
0.36
0.35
0.38
0.58

94.78
94.78
86.06
79.72
84.46

0.36
0.36
0.34
0.38
0.57

94.88
94.88
88.14
81.76
83.88

0.36
0.36
0.35
0.38
0.58

250 1.23
0.91
0.63
0.42
0.27

95.40
95.40
74.44
59.00
74.10

0.23
0.23
0.22
0.24
0.38

95.73
95.73
72.87
58.47
76.23

0.23
0.23
0.22
0.24
0.38

94.96
94.96
72.24
56.84
72.88

0.23
0.23
0.22
0.24
0.37

94.80
94.80
72.94
58.06
71.42

0.23
0.23
0.22
0.24
0.36

95.00
95.00
75.40
60.10
70.72

0.23
0.23
0.22
0.24
0.37

GCIT - generalized confidence interval; BCa - bias corrected and accelerated; BP - basic percentile;

AN - asymptotic normal; Cov - coverage; Len - length
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Table B.7: Coverage probability and length for 95% parametric Cls around BC under unequal costs
and and three classes with a normally distributed feature.

Delta GCI BCa BP AN
nj BCz; Cov Len Cov Len Cov Len Cov Len Cov Len

Cost; 10 045 91.10 031 96.73 031 91.78 030 89.84 030 87.54 0.30
031 93.04 0.27 9560 028 9148 026 90.66 025 86.88 0.25
021 9218 0.23 9627 024 9090 0.22 88.66 0.21 86.26 0.20
0.14 90.84 0.19 9537 021 9040 0.19 86.10 0.17 85.12 0.16
0.09 8994 0.16 9487 0.18 8994 0.16 8390 0.13 8526 0.12

50 045 9450 0.14 9537 0.14 95.14 0.14 9446 0.14 9354 0.14
031 9468 0.12 9497 0.12 9442 0.12 9472 0.12 9372 0.12
0.21 94.64 0.10 9490 0.10 9430 0.10 94.08 0.10 93.16 0.10
0.14 9408 0.09 9480 0.09 94.14 0.09 9334 0.08 93.24 0.08
0.09 93.56 0.07 95.07 0.07 94.00 0.07 92.64 0.07 9320 0.07

100 045 95.16 0.10 95.07 0.10 9460 0.10 9420 0.10 94.06 0.10
0.31 9520 0.08 9437 0.08 9442 0.09 9454 0.08 9394 0.08
021 95.00 0.07 9480 0.07 9438 0.07 94.12 0.07 93.94 0.07
0.14 9474 0.06 9507 0.06 94.14 0.06 93.72 0.06 93.90 0.06
0.09 9470 0.05 95.10 0.05 94.14 0.05 93.80 0.05 93.60 0.05

250 045 9492 0.06 9483 0.06 9512 0.06 95.06 0.06 94.96 0.06
031 9474 0.05 9443 0.05 94.80 0.05 94.64 0.05 94.84 0.05
021 9478 0.05 9443 0.05 9482 0.05 9432 0.05 9452 0.05
0.14 9478 0.04 9527 0.04 9454 0.04 9428 0.04 94.60 0.04
0.09 94.68 0.03 9497 0.03 9436 0.03 9424 0.03 9452 0.03

Cost; 10 0.89 9146 0.63 95.13 0.61 9126 059 89.16 0.61 8576 0.60
0.66 9190 0.60 96.63 0.60 9230 0.58 88.90 0.56 8524 0.56
046 91.04 0.53 9650 0.55 90.80 054 87.50 048 8392 048
0.31 90.02 045 9640 048 9046 047 8532 039 8354 0.38
0.20 89.00 0.36 9597 041 8954 039 83.02 030 8346 0.29

50 0.89 94.18 0.29 9477 029 94.02 0.29 9374 029 9324 0.29
0.66 9428 0.27 96.00 0.27 94.14 0.27 93.82 0.27 93.16 0.27
046 94.18 0.24 9557 024 94.02 024 9320 024 9294 0.24
0.31 93.84 0.21 95.17 0.21 93.84 021 9276 0.20 92.82 0.20
020 9328 0.17 9470 0.17 93,58 0.17 9230 0.16 9276 0.16

100 0.89 9486 0.21 94.47 0.21 9394 021 9390 021 93.66 0.21
0.66 9478 0.19 95.10 0.19 9420 0.19 9398 0.19 9392 0.19
046 9460 0.17 9470 0.17 9420 0.17 93.82 0.17 93.62 0.17
031 9426 0.15 9500 0.15 9454 0.15 93.66 0.14 9358 0.14
020 9388 0.12 95.00 0.12 9432 0.12 9354 0.11 9374 0.11

250 0.89 94.62 0.13 9493 0.13 9502 0.13 9492 0.13 9456 0.13

Continued on next page
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Table B.7 — continued from previous page

n; BC3

Delta

GCI

BCa

BP

AN

Cov

Len

Cov

Len

Cov

Len

Cov

Len

Cov

Len

0.66
0.46
0.31
0.20

94.68
94.58
94.74
94.70

0.12
0.11
0.09
0.07

95.00
95.13
94.77
95.00

0.12
0.11
0.09
0.07

94.80
94.68
94.56
94.70

0.12
0.11
0.09
0.08

94.74
94.56
94.54
94.48

0.12
0.11
0.09
0.07

94.36
94.36
94.50
94.56

0.12
0.11
0.09
0.07

GCI - generalized confidence interval; BCa - bias corrected and accelerated; BP - basic percentile;
AN - asymptotic normal; Cov - coverage; Len - length
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Table B.8: Coverage probability and length for 95% parametric Cls around 6] under unequal costs
and three classes with a normally distributed feature.

Delta GCI BCa BP AN
nj BCz; Cov Len Cov Len Cov Len Cov Len Cov Len

Cost; 10 045 91.28 52.0 97.00 433 90.08 6.75 9474 478 92.68 2.38
031 9342 093 96.73 144 9224 123 9382 122 9384 0.99
021 93.04 0.89 97.13 1.10 93.00 095 93.62 095 9252 0093
0.14 9230 093 9543 1.07 9340 1.01 9292 099 9248 1.00
0.09 9226 1.02 96.07 1.13 9334 1.12 9280 1.09 9252 1.10

50 045 94.04 049 9573 054 9336 0.52 9330 053 9322 0.50
0.31 95.02 040 9550 041 93.80 040 9390 0.39 9422 040
0.21 9438 039 9490 040 94.14 039 9424 039 9444 0.39
0.14 94.10 041 9457 042 9450 042 9438 041 94.60 042
0.09 9422 046 9523 046 9462 046 9438 046 94.18 046

100 0.45 9480 035 9490 036 94.16 035 9416 034 9442 035
0.31 9498 0.28 95.10 029 9482 0.28 94.82 0.28 9496 0.28
0.21 95.02 0.27 9520 0.28 9428 027 9436 0.27 9432 0.27
0.14 9514 0.29 9557 029 9440 029 9424 029 94.16 0.29
0.09 9492 032 9487 032 9438 032 9428 032 94.14 0.32

250 045 9472 022 9447 022 9476 0.22 94.68 022 94.84 0.22
031 94.64 0.18 9583 0.18 9478 0.18 9496 0.18 9486 0.18
021 9462 0.17 9530 0.17 9472 0.17 9478 0.17 94.74 0.17
0.14 9518 0.18 9443 0.18 94.88 0.18 94.88 0.18 94.78 0.18
0.09 9514 020 9517 020 94.70 020 9454 020 94.66 0.20

Cost; 10 0.89 8790 446 9643 879 88.80 11.5 87.44 8.16 8938 523
0.66 9222 495 9697 526 8994 494 9326 3.56 89.48 2.89
046 9356 747 9637 296 9094 252 9396 194 90.28 1.64
0.31 93.04 3.13 97.10 1.81 9232 146 93.74 130 90.84 1.16
020 9226 1.09 9623 136 92.84 122 9284 1.18 9156 1.14

50 0.89 9378 159 9560 2.63 94.18 297 9470 2.69 9330 227
0.66 94.02 0.52 9523 0.58 9336 0.61 9440 0.60 93.00 0.55
046 9396 045 9473 047 9324 046 9342 045 9334 045
0.31 9434 045 9483 046 9342 045 9346 045 9336 045
020 94.12 048 9507 049 093.60 048 9342 048 93.56 048

100 0.89 9508 059 9483 1.10 9460 1.23 96.02 1.28 94.16 1.03
0.66 9488 0.37 9503 038 93.84 037 9474 037 94.18 0.37
046 9478 032 9460 033 9426 032 94.66 032 9454 0.32
031 9504 032 9540 032 9422 032 9442 032 9434 0.32
020 95.18 0.34 9553 034 94.00 034 94.06 034 94.04 0.34

250 0.89 9498 034 9493 036 9522 037 96.24 0.38 95.14 0.36

Continued on next page
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Table B.8 — continued from previous page

n; BC3

Delta

GCI

BCa

BP

AN

Cov

Len

Cov

Len

Cov

Len

Cov

Len

Cov

Len

0.66
0.46
0.31
0.20

94.86
95.04
95.38
95.54

0.23
0.20
0.20
0.22

94.43
94.90
94.93
94.770

0.23
0.20
0.20
0.22

94.84
94.64
94.40
94.36

0.23
0.20
0.20
0.22

95.38
94.50
94.42
94.32

0.23
0.20
0.20
0.21

95.08
94.34
94.32
94.34

0.23
0.20
0.20
0.22

GCI - generalized confidence interval; BCa - bias corrected and accelerated; BP - basic percentile;

AN - asymptotic normal; Cov - coverage; Len - length
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Table B.9: Coverage probability and length for 95% parametric Cls around 6 under unequal costs
and three classes with a normally distributed feature.

Delta GCI BCa BP AN
nj BCz; Cov Len Cov Len Cov Len Cov Len Cov Len

Cost; 10 045 9154 284 9723 456 89.86 797 9454 561 9188 2.55
031 9344 093 9723 150 91.82 135 94.02 135 93.02 1.03
021 9286 0.89 97.17 1.10 93.18 097 93.76 097 9296 0.94
0.14 92770 093 9553 1.07 9374 1.02 9322 1.00 92.60 1.00
0.09 9266 1.03 9640 1.13 9384 1.12 93.10 1.10 9242 1.11

50 045 9430 049 9573 053 9322 0.53 9356 053 9332 0.50
031 9462 040 9550 042 9396 040 94.02 039 9442 040
0.21 94.66 039 9490 040 9446 039 94.68 0.39 9458 0.39
0.14 9460 041 9457 042 9476 042 9458 041 9450 042
0.09 9452 046 9523 046 9464 046 9436 046 9420 046

100 045 9488 035 9490 036 9354 035 9340 034 9382 035
0.31 95.08 0.28 95.10 0.29 9440 0.28 9454 0.28 94.62 0.28
0.21 95.00 0.27 9520 0.28 9448 027 9472 0.27 9474 0.27
0.14 9498 0.29 9557 029 94.64 029 9480 029 9478 0.29
0.09 9520 032 9487 032 9512 032 95.08 0.32 9512 0.32

250 045 9486 022 9447 022 9444 0.22 9456 022 9476 0.22
0.31 9556 0.18 9583 0.18 9498 0.18 9494 0.18 95.12 0.18
021 9542 0.17 9530 0.17 9490 0.17 95.04 0.17 9524 0.17
0.14 9518 0.18 9443 0.18 95.12 0.18 95.14 0.18 9528 0.18
0.09 9484 0.20 95.17 020 9492 020 9496 020 9496 0.20

Cost; 10 0.89 9240 21.6 98.03 295 8792 3.64 9564 343 9398 2.17
0.66 9322 580 9743 1.61 91.66 132 9466 151 93.64 1.28
046 9270 1.71 96.57 120 9328 1.07 9434 1.16 93.18 1.03
0.31 9264 094 96.00 1.10 9390 1.06 9394 1.10 9274 1.04
027 9260 1.03 9567 1.14 94.04 1.14 9342 1.15 9240 1.12

50 0.89 9398 0.58 9557 0.63 9234 058 9278 0.58 9428 0.58
0.66 94.68 043 9657 046 9356 043 9392 043 9458 043
046 94776 039 9493 041 9472 040 9478 040 94.68 0.40
0.31 9458 041 9473 042 94772 042 94.66 042 9442 042
027 9450 046 9507 046 94.62 046 9436 046 9420 0.46

100 0.89 95.10 041 9540 042 9322 041 9348 040 9426 040
0.66 9484 030 9520 031 94.10 030 94.40 0.30 94.58 0.30
046 9494 0.28 9463 0.28 9442 0.28 9454 0.28 9456 0.28
0.31 9500 0.29 9553 029 94.68 029 9484 029 9476 0.29
027 95.18 0.32 9450 032 9514 032 9510 0.32 9508 0.32

250 0.89 9540 0.26 95.03 0.26 9434 026 94.66 0.26 94.84 0.26

Continued on next page
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Table B.9 — continued from previous page

n; BC3

Delta

GCI

BCa

BP

AN

Cov

Len

Cov

Len

Cov

Len

Cov

Len

Cov

Len

0.66
0.46
0.31
0.27

95.52
95.20
95.12
94.88

0.19
0.18
0.18
0.20

94.87
94.90
95.47
94.93

0.19
0.18
0.18
0.20

94.70
95.08
95.20
94.92

0.19
0.18
0.19
0.20

94.86
95.20
95.20
94.96

0.19
0.18
0.18
0.20

94.92
95.38
95.22
94.96

0.19
0.18
0.18
0.20

GCI - generalized confidence interval; BCa - bias corrected and accelerated; BP - basic percentile;
AN - asymptotic normal; Cov - coverage; Len - length
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B.2 Additional CI performance results from Chapter 4

Table B.10: Simulation coverage probability and length for the nonparametric bootstrapped 95% CI

around BC; for two classes with a normally distributed feature when all ¢;;p; = 1, fori # j .

ny np BC, Coverage Length

5 5 06 90.30 0.47
0.4 63.60 0.35
0.2 0.00 0.17
0.1 0.00 0.06

6 9 06 91.47 0.45
0.4 84.90 0.35
0.2 0.00 0.18
0.1 0.00 0.07

10 10 0.6 92.93 0.48
0.4 94.80 0.39
0.2 7.40 0.22
0.1 0.00 0.10

12 18 0.6 90.27 0.42
0.4 93.63 0.35
0.2 73.47 0.22
0.1 0.00 0.11

20 20 0.6 91.33 0.42
0.4 94.83 0.35
0.2 90.5 0.24
0.1 0.00 0.13

22 28 0.6 87.10 0.35
0.4 91.97 0.30
0.2 91.60 0.20
0.1 1.63 0.12

30 30 06 92.47 0.37
0.4 95.43 0.32
0.2 95.37 0.22
0.1 69.70 0.14
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Appendix C: R Code
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C.1 R Code
C.1.1 Delta Method 95% Cls .

#IMPUTS TO CHANGE##
pl<—#SET Prevelance Class 1
p2<—#SET Prevelance Class 2
p3<—#SET Prevelance Class 3
s w21<—#SET COST 2|1
w31<—#SET COST 3|1
wl12<—#SET COST 1|2
w32<-#SET COST 3|2
wl13<—#SET COST 1|3
w23<—#SET COST 2|3
11 start<—-c(-.1,0)
L<—c(-1000,-1000)
13 U<—=c(1000,1000)
nx<—#SIZE Class 1
15 ny<—#SIZE Class 2
nz<—#SIZE Class 3
17 X<—#Vector of Values for Class 1
Y<—-#Vector of Values for Class 2
19 Z<—#Vector of Values for Class 3
gmul<—mean (X)
21 gmu2<-mean (Y)
gmu3<—mean(Z)
3 gsigl<—sd(X)
gsig2<—-sd(Y)
25 gsig3<—sd(Z)
f<—function (par) {(pnorm(par[2],gmul, gsigl)—pnorm(par[1],gmul, gsigl))=(plxw2l)+
27 (I—-pnorm(par[2],gmul, gsigl))=(plxw3l)+
(pnorm(par[1],gmu2, gsig2) )= (p2xwl2)+
29 (I-pnorm(par[2],gmu2, gsig2))=(p2xw32)+
(pnorm(par[1],gmu3, gsig3))=(p3+wl3)+
(pnorm(par[2],gmu3, gsig3)—pnorm(par[1],gmu3, gsig3))*(p3xw23)}
x<—nlminb (start , f, lower = L, upper = U)
cl<—x$par[1]
c2<—x$par[2]
35 EBBC<—x$objective
##ESTIMATE PARTIALS FOR THETA
37 g<—function (par) {(pnorm(par[2],mux, sigx )—pnorm(par[1],mux, sigx))=(pl=w2l)+
(1-pnorm(par[2],mux,sigx))=(plxw3l)+
(pnorm(par[1] ,muy,sigy))*(p2*wl2)+
(1-pnorm(par[2],muy, sigy))*=(p2+w32)+
(pnorm(par[1],muz,sigz))=(p3xwl3)+
(pnorm(par [2] ,muz, sigz)—pnorm(par[1],muz, sigz))=*(p3+w23)}
#Partial for Theta 1 & 2 wrt Mean 1
#start with +eppsilon
45 mux<—gmul +.0001
muy<—gmu?2
47 muz<—-gmu3
sigx<—gsigl
sigy<—gsig2
sigz<—gsig3
x<—nlminb (start , g, lower = L, upper = U)
olp<—x$par[1]
53 02p<—x$par[2]
#now — eppsilon

w

N

©

w

w

w
°

4

43

46

5
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55

57

5¢

61

65

67

69

77

79

8

83

91

95

97

99

101

103

105

107

109

111

mux<—gmul —.0001

muy<-gmu?2

muz<—-gmu3

sigx<—gsigl

sigy<—gsig2

sigz<—gsig3

x<—nlminb (start , g, lower = L, upper =
olm<—x$par[1]

3 02m<—x$par[2]

#Calc Partial
dclml<—-(olp—-olm)/.0002
dc2ml<—(02p—-02m)/.0002

#Partial for Theta 1 & 2 wrt Mean 2
#start with +eppsilon

mux<—gmul

muy<—gmu2+.0001

muz<—gmu3

sigx<—gsigl

3 sigy<—gsig2

sigz<—gsig3

5 x<—nlminb (start , g, lower = L, upper =

olp<—x$par[1]
02p<—-x$par[2]
#now — eppsilon
mux<—gmul
muy<—gmu2—.0001
muz<—gmu3
sigx<—gsigl
sigy<—gsig2
sigz<—gsig3

5 x<—nlminb (start , g, lower = L, upper =

olm<—x$par[1]

o2m<—-x$par [2]

#Calc Partial
dclm2<—-(olp-olm)/.0002
dc2m2<-(02p-02m)/.0002

#Partial for Theta 1 & 2 wrt Mean 3
#start with +eppsilon

3 mux<—gmul

muy<—gmu?2

muz<-gmu3+.0001

sigx<—gsigl

sigy<—gsig2

sigz<—gsig3

x<—nlminb (start , g, lower = L, upper =
olp<—x$par[1]

02p<—-x$par[2]

#now — eppsilon

mux<—gmul

muy<—gmu?2

muz<—gmu3-.0001

sigx<—gsigl

sigy<—gsig2

sigz<—gsig3

x<—-nlminb (start, g, lower = L, upper =
olm<—x$par[1]

o2m<—-x$par[2]

U)

U)

U)

U)

U)
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117

119

125

127

129

139

141

143

147

149

157

159

16

163

165

167

#Calc Partial

3 delm3<—(olp—olm)/.0002

dc2m3<—-(02p-02m)/.0002

#Partial for Theta 1 & 2 wrt Sigma 1
#start with +eppsilon

mux<—gmul

muy<—gmu?2

muz<—gmu3

sigx<—gsigl+.0001

sigy<—gsig2

sigz<—gsig3

3 x<—nlminb (start, g, lower = L, upper = U)

olp<—x$par[1]
02p<—-x$par[2]
#now — eppsilon
mux<—gmul
muy<—gmu?2
muz<—gmu3
sigx<—gsigl —.0001
sigy<—gsig2
sigz<—gsig3

3 x<—nlminb (start , g, lower = L, upper = U)

olm<—x$par[1]

5 02m<—x$par[2]

#Calc Partial

dclsl<—(olp—-olm)/.0002
dc2sl<—(02p—02m)/.0002

#Partial for Theta 1 & 2 wrt Sigma 2
#start with +eppsilon

mux<—gmul

muy<—gmu?2

muz<—-gmu3

sigx<—gsigl

5 sigy<—gsig2+.0001

sigz<—gsig3

x<—-nlminb (start , g, lower = L, upper = U)
olp<—x$par[1]

02p<—-x$par[2]

#now — eppsilon

mux<—gmul

muy<—gmu?2

3 muz<-gmu3

sigx<—gsigl

5 sigy<—gsig2 —.0001

sigz<—gsig3

x<—nlminb (start , g, lower = L, upper = U)
olm<—x$par[1]

o2m<—-x$par[2]

#Calc Partial

dcls2<—(olp—olm)/.0002
dc2s2<—(02p—02m)/.0002

#Partial for Theta 1 & 2 wrt Sigma 3
#start with +eppsilon

mux<—gmul

muy<-gmu2

muz<—gmu3

sigx<—gsigl
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169

171

175

177

179

181

187

189

191

193

195

197

199

201

203

205

207

209

sigy<—gsig2

sigz<—gsig3+.0001

x<—-nlminb (start , g, lower = L, upper = U)
olp<—x$par[1]

3 02p<—x$par[2]

#now — eppsilon

mux<—gmul

muy<—gmu?2

muz<—gmu3

sigx<—gsigl

sigy<—gsig2

sigz<—gsig3 —.0001

x<—nlminb (start , g, lower = L, upper = U)
olm<—x$par[1]

3 02m<—x$par[2]

#Calc Partial

5 dcls3<—(olp—olm)/.0002

dc2s3<-(02p—02m)/.0002

##calc partial of BC function wrt Mean 1, in three parts

dpl<—(1/gsigl)=((dc2ml—-1)+dnorm ((c2—gmul)/gsigl )= (w2lsxpl-w3lxpl)—-w2lxplsdnorm ((
cl—-gmul)/gsigl)*(dclml—1))

dp2<—(1/gsig2)x(wl2xp2+dnorm ((cl—gmu2)/gsig2)*dclml+w32xp2xdnorm ((gmu2—-c2)/gsig2
)x(—dc2ml))

dp3<—(1/gsig3)*((dclml)sdnorm ((cl—-gmu3)/gsig3 ) (wl3xp3-w23%p3)+w23xp3xdnorm ((c2—
gmu3)/gsig3)xdc2ml)

dbcml<—-dpl+dp2+dp3

##calc partial of BC function wrt Mean 2, in three parts

dpl<—(1/gsigl)*((dc2m2)=dnorm ((c2—gmul)/gsigl )x(w2lxpl-w31lxpl)-w2lxplsxdnorm ((cl—
gmul)/gsigl)xdclm?2)

dp2<—(1/gsig2)*(wl2xp2+dnorm ((cl—-gmu2)/gsig2)*(dclm2—-1)+w32xp2+dnorm ((gmu2—-c2)/
gsig2)x(1—-dc2m2))

dp3<—(1/gsig3 )=« (dclm2sdnorm ((cl—-gmu3)/gsig3 ) (wl3xp3-w23%p3)+w23xp3xdnorm ((c2—
gmu3)/gsig3)*xdc2m?2)

dbcm2<—-dpl+dp2+dp3

##calc partial of BC function wrt Mean 3, in three parts

dpl<—(1/gsigl)*(dc2m3xdnorm ((c2—gmul)/ gsigl ) (w2lxpl—-w31lxpl)—w2lxplsdnorm ((cl—
gmul)/gsigl)xdclm3)

dp2<—(1/gsig2)x(wl2xp2+dnorm ((cl—-gmu2)/gsig2 )+«dclm3+w32:«p2xdnorm ((gmu2—-c2)/gsig2
)#(—dc2m3))

dp3<—(1/gsig3)*((declm3—1)«dnorm ((cl—gmu3)/gsig3 )*(wl3xp3-w23xp3)+w23xp3xdnorm ((
c2—gmu3)/gsig3)x(dc2m3-1))

dbcm3<—-dpl+dp2+dp3

##calc partial of BC function wrt Sigma 1, in three parts

dpl<—(1/gsigl)=(dnorm ((c2—-gmul)/gsigl )= (w2lsplx(dc2sl —((c2—gmul)/gsigl))+w3lxpl=
(—dc2sl —((gmul-c2)/gsigl)))

—w2lsplxdnorm ((cl—-gmul)/gsigl)=x(dclsl —((cl—-gmul)/gsigl)))

dp2<—(1/gsig2)x(wl2xp2+dnorm ((cl—-gmu2)/gsig2)«dclsl —w32«p2xdnorm ((gmu2—-c2)/gsig2
)sxdc2sl)

dp3<—(1/gsig3 )« (dnorm ((cl—gmu3)/gsig3)*xdclslx(wl3xp3-w23xp3)+w23xp3+dnorm ((c2—
gmu3)/gsig3)=xdc2sl)

dbcsl<—dpl+dp2+dp3

##calc partial of BC function wrt Sigma 2, in three parts

dpl<—(1/gsigl )=« (dnorm ((c2—-gmul)/gsigl)xdc2s2x(w2lxpl—-w3lxpl)—w2lxpls«dnorm ((cl—
gmul)/gsigl)=dcls2)

dp2<—(1/gsig2)x(wl2xp2+dnorm ((cl—gmu2)/gsig2 )« (dcls2 —((cl—gmu2)/gsig2))+

w32xp2sdnorm ((gmu2—-c2)/gsig2)+(—dc2s2 —((gmu2-c2)/gsig2)))
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dp3<—(1/gsig3)x(dnorm ((cl—gmu3)/gsig3)*xdcls2x(wl3xp3-w23%p3)+w23xp3+dnorm ((c2—
gmu3)/gsig3)xdc2s2)

dbcs2<—dpl+dp2+dp3

##calc partial of BC function wrt Sigma 3, in three parts

215 dpl<—(1/gsigl)«(dnorm ((c2—-gmul)/gsigl )xdc2s3(w2lxpl—-w31lxpl)-w2lxplsxdnorm ((cl-

219

223

225

229

235

)
3

239

241

245

247

N

gmul)/gsigl)=dcls3)
dp2<—(1/gsig2)x(wl2xp2xdnorm ((cl—gmu2)/gsig2)xdcls3+w32«p2xdnorm ((gmu2—-c2)/gsig2
)x(—=dc2s3))
dp3<-(1/gsig3 )= (dnorm ((cl-gmu3)/gsig3)+(dcls3 —((cl-gmu3)/gsig3))+(wl3xp3-w23xp3)
+
w23:xp3sxdnorm ((c2—-gmu3)/ gsig3 )« (dc2s3 —((c2—gmu3)/gsig3)))
dbcs3<—dpl+dp2+dp3
#Calc Variances of Parameters
#var of mean
vml<—(gsigl "2) /nx
vm2<—( gsig2 “2) /ny
vm3<—-(gsig3"2)/nz
#var of sigma
vsl<—(gsigl"2)/(2x(nx—-1))
vs2<—(gsig2"2)/(2x(ny-1))
vs3<—(gsig3"2)/(2x(nz—-1))
#Calc Variance of Bayes Cost
VBC<—(dbcm1"2)xvml+(dbcsl "2)=xvsl+
(dbcm2”2) xvm2+(dbcs2 "2) xvs2+
(dbcm3”2) xvm3+(dbcs3 "2) xvs3
#Calc Variance of Threshold 1
VCl<—(dclml1”2)sxvml+(dclsl "2)=vsl+
(dc1lm272)xvm2+(dcls2"2)xvs2+
(dc1m372)xvm3+(dcl1s3"2)xvs3
#Calc Variance of Threshold 2
VC2<—(dc2ml1”2) xvml+(dc2s1 "2)xvsl+
(de2m272) xvm2+(dc2s2"2) = vs2+
(de2m37°2) xvm3+(dc2s3"2) xvs3
##CI results
LBCl<—cl1 -1.96%sqrt (VCI)

3 UBCl<—c1+1.96xsqrt (VCl)

LBC2<—c2-1.96xsqrt (VC2)
UBC2<—c2+1.96xsqrt (VC2)
LBBC<-EBC—-1.96+sqrt (VBC)
UBBC<-EBC+1.96xsqrt (VBC)

C.1.2 Generalized 95% ClIs .

#IMPUTS TO CHANGE##
pl<—#SET Prevelance Class 1
p2<—#SET Prevelance Class 2
p3<—#SET Prevelance Class 3
w21<—#SET COST 2|1
w31<—#SET COST 3|1
wl12<—#SET COST 1|2
w32<—-#SET COST 3|2
w13<—#SET COST 1]3
w23<—#SET COST 2|3
nx<-#SIZE Class 1
ny<—#SIZE Class 2

3 nz<—#SIZE Class 3

X<—#Vector of Values for Class 1
Y<—#Vector of Values for Class 2
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Z<—#Vector of Values for Class 3
17 K<=1500 #Change if desire K other than 1500
##Calculations , Do not change
v start<—c(—.1,0)
L<—c(-1000,-1000)
21 U<—=c (1000,1000)
ybarl<—mean (X)
23 ybar2<—mean(Y)
ybar3<—mean(Z)
25 varl<—var (X)
var2<—var(Y)
27 var3<—var (Z)
##Create Pivotal Quantile for each Mean, and Var
2 tl<—1rt(K,nx-1)
t2<—-rt(K,ny—-1)
t3<—rt(K,nz-1)
Vi<-rchisq (K,nx—-1)
33 V2<—rchisq (K,ny—-1)
V3<—rchisq (K,nz-1)
35 Rsl<—c(rep ((nx—1)=varl ,K))/VI1
Rs2<—c(rep ((ny—1)=xvar2 ,K))/V2
37 Rs3<—c(rep ((nz—-1)xvar3 ,K))/V3
Rml<—c(rep (ybarl ,K))—-(tl=x(sqrt(varl/nx)))
39 Rm2<—c (rep (ybar2 ,K))—(t2=(sqrt(var2/ny)))
Rm3<—c(rep (ybar3 ,K))—(t3«(sqrt(var3/nz)))
#Find K BC and Opt. Threshold values using Numerical Minimization
BC<—c(rep(-9999,K))
Cl<—c(rep(—-9999 ,K))
C2<—-c(rep(—-9999.K))
45 for (i in 1:K){
h<—function (par) {(pnorm(par[2] ,Rml[i],sqrt(Rsl[i]))—pnorm(par[1],Rml[i],sqrt(Rsl
[i])))=(pl=w2l)+
47 (1-pnorm(par[2] ,RmI[i],sqrt(Rsl[i])))*(plxw3l)+
(pnorm(par[1],Rm2[i],sqrt(Rs2[i])))*=(p2xwl2)+
(1-pnorm(par[2] ,Rm2[i],sqrt(Rs2[i])))=(p2xw32)+
(pnorm(par [1] ,Rm3[i],sqrt(Rs3[i])))=(p3xwl3)+
(pnorm(par[2] ,Rm3[i],sqrt(Rs3[i]))—pnorm(par[1],Rm3[i],sqrt(Rs3[i])))=*(p3xw23)}
sols<—optim(start , h, lower = L, upper = U, method="L-BFGS-B”)
53 BC[i]<—sols$value
Cl[i]<-sols$par[1]
55 C2[i]<—sols$par[2]
}
s7 # CI Results
LBCl<—quantile (C1,.025)
50 UBCl<—quantile (C1,.975)
LBC2<—quantile (C2,.025)
61 UBC2<—quantile (C2,.975)
LBBC<—quantile (BC,.025)
63 UBBC<—quantile (BC,.975)

C.1.3 Fiducial 95% CI for BC with Equal Weights.

##INPUTS for Setup##
nl<—-#Sample Size Class 1
n2<—#Sample Size Class 1
n3<—#Sample Size Class 1
5 BChat<—#Estimated BC
###Do not Change

3

4

43

4

W

181



7 g<—c(1,0,1,0,1,0)

Umat<—c(1/n1,0,1/n2,0,1/n3,0)

BChat<—round (BChat,5)

row=(nl+1)%2

11 ss=matrix (seq (from=0,to=row—1,by=1), ncol=2)
ss[,2]=nl-ss[,1]

13 ssl<—ss[,1:2]
row=(n2+1)=2

15 ss=matrix (seq(from=0,to=row—-1,by=1), ncol=2)
ss[,2]=n2-ss[,1]

17 ss2<—ss[,1:2]
row=(n3+1)%2

19 ss=matrix (seq(from=0,to=row—-1,by=1), ncol=2)
ss[,2]=n3-ss[,1]

21 $s3<—ss[,1:2]
LEN<—-length (ssl[,1])=xlength(ss2[,1])=«length(ss3[,1])

2 lenl<—length(ssl1[,1])
len2<-length (ss2[,1])

25 len3<—-length(ss3[,1])
vl<—c(rep(l,len2xlen3))

27 coll<—kronecker(ssl ,vl)
v2<—c(rep(l,lenl))

29 v3<—c(rep(1,len3))

col2<—kronecker (v2, kronecker(ss2,v3))

vd<—c(rep(l,lenlxlen2))

col3<—kronecker(v4,ss3)

33 SS<—matrix (cbind (coll ,col2,co0l3),ncol=6)
Ul<-SS[,1:6]%+«%Umat

35 Ul<—round (U1,5)
SS<—cbind (SS,U1)

37 temp<—data . frame (SS)
SSOR<—temp[order (temp[,7]) ,]

39 ##CREATE Probability SAMPLE SPACES

##by .1, SSPI

pvec<—seq(from=0, to=1, by=.1)

len<—length (pvec)

3 vli<—c(rep(l,lenxlen))
coll<—kronecker(pvec,vl)

45 v2<—c(rep(1l,len))
col2<—kronecker (v2, kronecker (pvec,v2))

47 col3<—kronecker (v2, kronecker(v2,pvec))

cl2<—c(l-coll)

c22<—c(l=col2)

c32<-c(l-col3)

SSPl1<—cbind (coll ,c12,col2,c22,co0l3 ,c32)

##by .05, SSP2

pvec<—seq (from=0, to=1, by=.05)

len<—length (pvec)

vi<—c(rep(l,lenxlen))

coll<—kronecker(pvec,vl)

57 v2<—c(rep(1l,len))

col2<—kronecker (v2, kronecker (pvec,v2))

col3<—kronecker(v2, kronecker (v2,pvec))

cl2<—c(l—-coll)

c22<—c(l-col2)

c32<—c(l-col3)

63 SSP2<—cbind (coll ,cl12,col2,c22,co0l3,c32)
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69
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9
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109

##by .01, SSP3
pvec<—seq (from=0, to=1, by=.01)
len<—length (pvec)

7 vl<—c(rep(l,lenxlen))

coll<—kronecker(pvec,vl)
v2<—c(rep(l,len))
col2<—kronecker (v2, kronecker (pvec,v2))
col3<—kronecker(v2, kronecker (v2,pvec))
cl2<—c(l—-coll)

c22<—c(l=col2)

c32<-c(l=col3)
SSP3<—cbind (coll ,cl12,col2,c22,co0l3 ,c32)
##by .005, SSP4

pvec<—seq(from=0, to=1, by=.005)
len<—length (pvec)
vi<—c(rep(l,lenxlen))
coll<—kronecker(pvec,vl)
v2<—c(rep(l,len))
col2<—kronecker (v2, kronecker (pvec,v2))

3 col3<—kronecker(v2, kronecker (v2,pvec))

cl2<—c(l-coll)

5 ¢22<—c(1—=col2)

c32<—c(l=col3)

7 SSP4<—cbind (coll ,cl12,co0l2 ,¢c22,col3,c32)

end<—length (SSOR[,1])

##Define Partial CDFS

fl<—function (p) {

factorial (nl)=xfactorial (n2)xfactorial (n3)sxsum(((p[1]"(SSOR[(UBound+1):end,1]))/
factorial (SSOR[(UBound+1):end,1]))*((p[2]"(SSOR[(UBound+1):end,2]))/
factorial (SSOR[(UBound+1):end,2]) )=

((p[3]°(SSOR[(UBound+1):end,3]))/factorial (SSOR[(UBound+1):end,3]))=((p[4]"(SSOR
[(UBound+1):end ,4]))/factorial (SSOR[(UBound+1):end,4]) )=

3 ((p[5]°(SSOR[(UBound+1):end,5]))/factorial (SSOR[(UBound+1):end,5]) )= ((p[6]"(SSOR

[(UBound+1):end ,6]))/factorial (SSOR[(UBound+1):end,6])))

1

f2<—function (p) {

factorial (nl)=«factorial (n2)xfactorial (n3)sxsum(((p[1]"(SSOR[LBound:UBound,1]))/
factorial (SSOR[LBound:UBound,1]) )+ ((p[2]"(SSOR[LBound:UBound,2]))/factorial(
SSOR[LBound: UBound,2]) ) *

((p[3]1°(SSOR[LBound:UBound,3]))/factorial (SSOR[LBound:UBound,3]) )« ((p[4]"(SSOR[
LBound:UBound,4]))/factorial (SSOR[LBound:UBound,4]) )=

((p[51°(SSOR[LBound:UBound,5]))/factorial (SSOR[LBound:UBound,5]) )= ((p[6]"(SSOR[
LBound:UBound,6]))/factorial (SSOR[LBound:UBound,6])))

1

BCmatch<—which (SSOR[,7]==BChat[1])

LBound<—min (BCmatch)

UBound<—max (BCmatch)

##Find Solution 1st Iteration ####

BCOUTl1<—apply (SSP1, 1, FUN = f1)

BCOUT2<—apply (SSP1, 1, FUN = f2)

BCL<-BCOUT1+BCOUT2

BCU<—c(rep (1,length (BCOUTI) ) )-BCOUTI

BC<—-SSP1%+%g

BC<-round (BC,5)

blah2<-cbind (SSP1,BCU,BC)

BCcdf<—unique (BC)

BCcdf<—cbind (BCcdf,rep(—-999,length (BCcdf)))
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113 for (i in 1:length(BCcdf[,1])){
BCcdf[i,2]<—max(blah2 [which(blah2[,8]==BCcdf[i,1]) ,7])
115}
#GET UB
117 temp<—max (BCcdf[ which (BCcdf[,2] <=0.025) ,2])
UB<-min (BCcdf[ which (BCcdf[,2]==temp) ,1])
119 #GET LB
BC<-SSP1%+%g
121 BC<-round (BC,5)
blah2<-cbind (SSP1,BCL,BC)
123 BCcdf<—unique (BC)
BCcdf<—cbind (BCcdf ,rep(-999,length (BCcdf)))
5 for (i in 1:length(BCcdf[,1])){
BCcdf[i,2]<-max(blah2[which(blah2[,8]==BCcdf[i,1]) ,7])
27}
temp<—max (BCcdf[ which (BCcdf[,2] <=0.025) ,2])
129 LB<—max (BCcdf[ which (BCcdf[,2]==temp) ,1])
##Refine in on Solution 1st time
BC<—SSP2%x%g
BC<-round (BC,5)
33 SSPtemp<—cbind (SSP2,BC)
SSPn<—SSP2[ which (SSPtemp[,7] <=(UB+.2)&SSPtemp[,7]>=(UB-.2)) ,]
35 BCOUTl<—apply (SSPn, 1, FUN = f1)
BCU<—c (rep(1,length (BCOUT1) ) )-BCOUT1
137 BC<=SSPn%x%g
BC<-round (BC,5)
139 blah2<—cbind (SSPn ,BCU,BC)
BCcdf<—unique (BC)
141 BCcdf<—cbind (BCcdf,rep(—-999,length (BCcdf)))
for (i in 1:length(BCcdf[,1])){
143 BCcdf[i,2]<-max(blah2 [which(blah2[,8]==BCcdf[i,1]) ,7])
}
145 #GET UB
temp<—max (BCcdf[ which (BCcdf[,2] <=0.025) ,2])
147 UB<—min (BCcdf [ which (BCcdf[,2]==temp) ,1])
#GET LB
149 BC<—=SSP2%x%g
BC<-round (BC,5)
SSPtemp<—cbind (SSP2,BC)
SSPn<—-SSP2[ which (SSPtemp[,7] <=(LB+.2)&SSPtemp[,7]>=(LB-.2)),]
153 BCOUTl<—apply (SSPn, 1, FUN = f1)
BCOUT2<—apply (SSPn, 1, FUN = f2)
155 BCL<—BCOUT1+BCOUT2
BC<-SSPn%:+«%g
157 BC<—round (BC,5)
blah2<-cbind (SSPn,BCL,BC)
159 BCcdf<—unique (BC)
BCcdf<—cbind (BCcdf,rep(-999,length (BCcdf)))
161 for (i in 1l:length(BCcdf[,1])){
BCcdf[i,2]<-max(blah2[which(blah2[,8]==BCcdf[i,1]) ,7])
163 }
temp<—max (BCcdf[ which (BCcdf[,2] <=0.025) ,2])
165 LB<—max (BCcdf[ which (BCcdf[,2]==temp) ,1])
##Refine in on Solution 2nd time
167 BC<=SSP3%:%g
BC<—-round (BC,5)
169 SSPtemp<—cbind (SSP3,BC)

13
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SSPn<—SSP3 [ which (SSPtemp[,7] <=(UB+.1)&SSPtemp[,7]>=(UB-.1)) ,]
171 BCOUT1<—apply (SSPn, 1, FUN = f1)
BCU<—c(rep(1,length (BCOUT1) ) )-BCOUTI1
173 BC<—SSPn%x%g
BC<-round (BC,5)
175 blah2<-cbind (SSPn ,BCU,BC)
BCcdf<—unique (BC)
177 BCcdf<—cbind (BCcdf, rep(—-999,length (BCcdf)))
for (i in 1l:length(BCcdf[,1])){
179 BCcdf[i,2]<—max(blah2 [which(blah2[,8]==BCcdf[i,1]) ,7])
1
181 #GET UB
temp<-—max (BCcdf[ which (BCcdf[,2] <=0.025) ,2])
183 UB<—min (BCcdf[ which (BCcdf[,2]==temp) ,1])
#GET LB
185 BC<=SSP3%:%g
BC<-round (BC,5)
187 SSPtemp<-cbind (SSP3,BC)
SSPn<—SSP3 [ which (SSPtemp[,7] <=(LB+.1)&SSPtemp[,7]>=(LB-.1)),]
139 BCOUTl<—apply (SSPn, 1, FUN = f1)
BCOUT2<—apply (SSPn, 1, FUN = f2)
191 BCL<—BCOUT1+BCOUT2
BC<-SSPn%:+«%g
193 BC<—round (BC,5)
blah2<-cbind (SSPn,BCL,BC)
195 BCcdf<—unique (BC)
BCcdf<—cbind (BCcdf,rep(-999,length (BCcdf)))
197 for (i in 1:length(BCcdf[,1])){
BCcdf[i,2]<-max(blah2[which(blah2[,8]==BCcdf[i,1]) ,7])
199 }
temp<—max (BCcdf[ which (BCcdf[,2] <=0.025) ,2])
201 LB<—max (BCcdf[ which (BCcdf[,2]==temp) ,1])
##Refine in on Solution 3rd time
203 BC<—SSP4%:%g
BC<-round (BC,5)
205 SSPtemp<—cbind (SSP4,BC)
SSPn<—SSP4 [ which (SSPtemp[,7] <=(UB+.05)&SSPtemp[,7] >=(UB-.05)) ,]
207 BCOUT1<—apply (SSPn, 1, FUN = f1)
BCU<—c(rep(1,length (BCOUT1) ) )-BCOUT1
200 BC<—=SSPn%x%g
BC<-round (BC,5)
blah2<-cbind (SSPn,BCU,BC)
BCcdf<—unique (BC)
3 BCcdf<—cbind (BCcdf, rep(-999,length (BCcdf)))
for (i in 1l:length(BCcdf[,1])){
215 BCcdf[i,2]<-max(blah2[which(blah2[,8]==BCcdf[i,1]) ,7])
1
217 #GET UB
temp<—max (BCcdf[ which (BCcdf[,2] <=0.025) ,2])
219 UB<—min (BCcdf[ which (BCcdf[,2]==temp) ,1])
#GET LB
221 BC<=SSP4%x«%g
BC<-round (BC,5)
23 SSPtemp<—cbind (SSP4,BC)
SSPn<—-SSP4[ which (SSPtemp[,7] <=(LB+.05)&SSPtemp[,7]>=(LB-.05)) ,]
25 BCOUT1<—apply (SSPn, 1, FUN = f1)
BCOUT2<—apply (SSPn, 1, FUN = f2)

o

)
>
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27 BCL<-BCOUT1+BCOUT2
BC<—-SSPn%:%g
229 BC<-round (BC,5)
blah2<-cbind (SSPn,BCL,BC)
231 BCcdf<—unique (BC)
BCcdf<—cbind (BCcdf, rep(-999.,length (BCcdf)))
233 for (i in l:length(BCcdf[,1])){
BCcdf[i,2]<-max(blah2[which(blah2[,8]==BCcdf[i,1]) ,7])
235}
templ<—max (BCcdf[ which (BCcdf[,2] <=0.025) ,2])
237 LB<—max (BCcdf[ which (BCcdf[,2]==templ) ,1])
#CI Results
239 print (c(LB,UB))

C.1.4 Fiducial 95% CI for BC with Unequal Weights.

#Inputs to Change
pl<—#SET Prevelance Class 1
p2<—#SET Prevelance Class 2
p3<—#SET Prevelance Class 3
5 w21<—#SET COST 2|1
w31<—#SET COST 3|1
wl12<-#SET COST 1]2
w32<-#SET COST 3|2
wl13<—#SET COST 1|3
w23<—-#SET COST 2|3
11 nl<—#Sample Size Class 1
n2<—#Sample Size Class 2
13 n3<—#Sample Size Class 3
BChat<—#Estimated Bayes Cost
15 ##CREATE MULTINOMIAL SAMPLESPACE VIA Weizhen Wang 2012
#Class 1 SS
17 row=(nl+1)%(nl+2)/2x4
ss=matrix (1:row, ncol=4)
19 nn=1
fn=1
21 while (nn<n+1+0.5){
low=fn—-nn+1
23 up=fn
ss[low:up,1]=n+1-nn
25 uu=up-low
ss[low:up,2]=0:uu
27 nn=nn+1
fn=fn+nn
29 }
ss[,3]=n—-ss[,1]=-ss[,2]
31 ssl<—ss[,1:3]
#Class 2 SS
33 row=(n2+1)%(n2+2)/2x4
ss=matrix (1:row, ncol=4)
35 nn=1
fn=1
37 while (nn<n+1+40.5){
low=fn—nn+1
39 up=fn
ss[low:up,l]=n+1-nn
41 uu=up—low
ss[low:up,2]=0:uu

N
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43

47

46

51

55

59

61

67

69

73

81

85

87

89

91

95

97

nn=nn+1

fn=fn+nn

1

ss[,3]=n—-ss[,1]=-ss[,2]
ss2<—ss[,1:3]

#Class 3 SS
row=(n3+1)%(n3+2)/2x4
ss=matrix (1:row, ncol=4)
nn=1

fn=1

3 while (nn<n+1+0.5){

low=fn—nn+1

up=fn
ss[low:up,l]=n+1-nn
uu=up-low
ss[low:up,2]=0:uu
nn=nn+1

fn=fn+nn

}
ss[,3]=n-ss[,1]—ss[,2]

3 $83<—ss[,1:3]

LEN<—-length (ssl1[,1])=xlength(ss2[,1])xlength(ss3[,1])

s lenl<—length(ssl[,1])

len2<-length (ss2[,1])
len3<—length(ss3[,1])
vl<—c(rep(l,len2xlen3))
coll<—kronecker(ssl ,vl)
v2<—c(rep(l,lenl))

v3<—c(rep(l,len3))
col2<—kronecker (v2, kronecker(ss2,v3))
vd<—c(rep(l,lenlxlen2))
col3<—kronecker(v4,ss3)

5 SS<—matrix (cbind (coll ,co0l2,co0l3) ,ncol=9)

Umat<—c (0 ,(plsw21)/nl ,(plxw31)/nl1,0,(p2%wl12)/n2,(p2+w32)/n2,0,(p3+wl3)/n3,(p3=x
w23)/n3)

; Ul<—=SS[,1:9]%+%Umat

Ul<-round (Ul1,5)

SS<-cbind (SS,U1)

##Order BC sample Space
temp<—data.frame (SS)
SSOR<—-temp[order (temp[,10]) ,]

3 end<—length (SSOR[,1])

##by .05, SSP3

pvec<—seq (from=0, to=1, by=.05)
len<—length (pvec)
vi<—c(rep(l,len))
coll<—kronecker(pvec,vl)
col2<-kronecker (vl ,pvec)
col3<—1-coll —col2
Ps<—cbind (coll ,co0l2,col3)
Pspace<—Ps[—which(Ps[,3]<0) ,]

3 rowp<—length (Pspace[,1])

vl<—c(rep (1l ,rowpsxrowp))
coll<—kronecker (Pspace ,vl)
v2<—c(rep(1l,rowp))
col2<—kronecker(v2, kronecker (Pspace ,v2))
col3<—kronecker (v2, kronecker (v2, Pspace))

187



99

101

103

105

107

109

129

13

137

139

SSPl<—matrix (cbind (coll ,col2,co0l3),ncol=9)

g<—c(0,(plsw2l) ,(plxw31) ,0,(p2xw12) ,(p2xw32) ,0,(p3xwl3) ,(p3xw23))

fl<—function (p) {

factorial (nl)xfactorial (n2)xfactorial (n3)ssum(((p[1]"(SSOR[1:(LBound—-1),1]))/
factorial (SSOR[1:(LBound—1),1]))*((p[2]"(SSOR[1:(LBound—-1) ,2]))/factorial(
SSOR[1:(LBound-1) ,2]) )=

((p[3]°(SSOR[1:(LBound—-1) ,3]))/factorial (SSOR[1:(LBound—1),3]))*((p[4]1"(SSOR[1:(
LBound-1) ,4]))/factorial (SSOR[1:(LBound—-1) ,4]))=

((p[S51°(SSOR[1:(LBound-1) ,5]))/factorial (SSOR[1:(LBound—1),5]))*((p[6]1"(SSOR[1:(
LBound-1) ,6]))/factorial (SSOR[1:(LBound—1) ,6]))x*

((p[71°(SSOR[1:(LBound-1) ,7]))/factorial (SSOR[1:(LBound—1),7]))*((p[8]1"(SSOR[1:(
LBound-1) ,8]))/factorial (SSOR[1:(LBound-1) ,8]) )=

((p[9]1"(SSOR[1:(LBound-1) ,9]))/factorial (SSOR[1:(LBound—-1),9])))

1

f2<—function (p) {

factorial (nl)xfactorial (n2)xfactorial (n3)xsum(((p[1]"(SSOR[LBound:UBound,1]))/
factorial (SSOR[LBound:UBound,1]) )+ ((p[2]"(SSOR[LBound:UBound,2]))/factorial(
SSOR[LBound: UBound,2]) ) *

((p[3]"(SSOR[LBound:UBound,3]))/factorial (SSOR[LBound:UBound,3]) )= ((p[4]"(SSOR[
LBound:UBound,4]))/factorial (SSOR[LBound:UBound,4]) )

((p[51°(SSOR[LBound:UBound,5]))/factorial (SSOR[LBound:UBound,5]) )= ((p[6]"(SSOR[
LBound:UBound,6]) )/ factorial (SSOR[LBound:UBound,6]) )=

((p[71"(SSOR[LBound:UBound,7]))/factorial (SSOR[LBound:UBound,7]) )= ((p[8]"(SSOR[
LBound:UBound,8]) )/ factorial (SSOR[LBound:UBound,8]) )=

3 ((p[9]°(SSOR[LBound:UBound,9]))/factorial (SSOR[LBound:UBound,9])))

}

s BCmatch<—which (SSOR[,10]==BChat[1])

LBound<—min ( BCmatch)

UBound<—max (BCmatch)

BCOUTIl<—apply (SSP1, 1, FUN f1)
BCOUT2<—apply (SSP1, 1, FUN = f2)
BCU<-BCOUT1+BCOUT2

BCL<—c(rep (1,length (BCOUTI1)))-BCOUTI1
BC<—SSP1%x=%g

3 BC<-round (BC,5)

blah2<-cbind (SSP1 ,BCU,BC)

BCcdf<—unique (BC)

BCcdf<—cbind (BCcdf, rep(-999,length (BCcdf)))

for (i in 1:length(BCcdf[,1])){
BCcdf[i,2]<-—max(blah2[which(blah2[,11]==BCcdf[i,1]) ,10])
}

BCcdf<—data . frame (BCcdf)

BCcdf<-BCcdf[ order (BCcdf[,1]) ,]

BCcdfs<—BCcdf

33 blah<—length (BCcdfs[,1])

for (i in 1:blah){
BCcdfs[i,2]<—max(BCcdf[ which (BCcdf[,1]>=BCcdfs[i,1]) ,2])
}

BCcdf<-BCcdfs

#GET UB

temp<-max (BCcdf [ which (BCcdf[,2] <=0.025) ,2])

UB<-min (BCcdf[ which (BCcdf[,2]==temp) ,1])

#GET LB

BC<—SSP1%x=%g

3 BC<—round (BC,5)

blah2<-cbind (SSP1,BCL,BC)

5 BCcdf<—unique (BC)
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BCcdf<—cbind (BCcdf, rep(-999,length (BCcdf)))
147 for (i in l:length(BCcdf[,1])){
BCcdf[i,2]<-max(blah2[which(blah2[,11]==BCcdf[i,1]) ,10])
149}
BCcdf<—data . frame (BCcdf)
BCcdf<—-BCcdf[ order (BCcdf[,1]) ,]
BCcdfs<—BCcdf
153 blah<—length (BCcdfs[,1])
for (i in 1:blah)/{
155 BCcdfs[i,2]<—max(BCcdf[ which (BCcdf[,1]<=BCcdfs[i,1]) ,2])
}
157 BCcdf<—BCcdfs
temp<-—max (BCcdf[ which (BCcdf[,2] <=0.025) ,2])
159 LB<—max (BCcdf[ which (BCcdf[,2]==temp) ,1])
#CI Results
61 print (c(LB,UB))

C.1.5 Delta Method Hypothesis Tests .
C.1.5.1 One-Sided Test on Single BC Value.

#Set Up
pl<—#SET Prevelance Class 1
3 p2<—#SET Prevelance Class 2
p3<—#SET Prevelance Class 3
5 w21<—#SET COST 2|1
w31<—#SET COST 3|1
wl12<-#SET COST 1]2
w32<-#SET COST 3|2
wl13<—#SET COST 1|3
w23<-#SET COST 2|3
11 TV<—# Set BCnot
nl<-#SIZE Class 1
13 n2<-#SIZE Class 2
n3<-#SIZE Class 3
15 Y<—#Vector of Values for Class 1
X<—#Vector of Values for Class 2
17 Z<—#Vector of Values for Class 3
start<—-c(—-.1,0)
19 L<—c(-1000,-1000)
U<—c(1000,1000)
21 ##Do Not Change
gmul<—mean(Y)
23 gmu2<—mean (X)
gmu3<—mean(Z)
5 gsigl<—sd(Y)
gsig2<-sd(X)
27 gsig3<—sd(Z)
f<—function (par){abs(pnorm(par[2],gmul, gsigl )—pnorm(par[1],gmul, gsigl))=(plxw2l)
+
29 abs(l—pnorm(par[2],gmul, gsigl))=(plxw3l)+
abs (pnorm(par[1],gmu2, gsig2))=(p2=wl2)+
abs(l—pnorm(par[2],gmu2, gsig2))=(p2xw32)+
abs (pnorm(par[1],gmu3, gsig3))=(p3xwl3)+
33 abs (pnorm(par[2],gmu3, gsig3)—pnorm(par[1],gmu3, gsig3) )= (p3xw23)}
x<—nlminb (start , f, lower = L, upper = U)
35 cl<—x$par[1]
c2<-x$par[2]
37 EBC<—x$objective

15
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#Calculate All Partial Derivatives as was done for Delta Method CI#
39 #Calc Variances of Parameters
vml<—(gsigl "2)/nl
vm2<—( gsig2 "2) /n2
vm3<—-(gsig3"2)/n3
43 #Calc var of sig using delta method

vsl<—(gsigl"2)/(2x(nl-1))

45 vs2<—(gsig272)/(2x(nl-1))
vs3<—(gsig3"2)/(2x(nl-1))

47 VBC<—=(dbcm1 "2) xvml+(dbcsl "2)«vsl+

(dbcm272) xvm2+(dbcs2"2)xvs2+

49 (dbcm372) xvm3+(dbcs3 "2) xvs3

W<—(EBC-TV) /sqrt (VBC)

#Test p—value — to compare to alpha

deltap<—pnorm (W, lower. tail=TRUE)

C.1.5.2 One-Sided Test on the Difference of Two Independent BC Values.

pl<—#SET Prevelance Class 1
p2<—#SET Prevelance Class 2
p3<—#SET Prevelance Class 3
w21<—#SET COST 2|1
w31<—#SET COST 3|1
w12<—#SET COST 1|2
w32<—#SET COST 3|2
w13<—#SET COST 1|3
w23<—#SET COST 2|3
10 TV<—#Set BCnot
nl<—#SIZE Class 1
12 n2<-#SIZE Class 2
n3<-#SIZE Class 3
14 TV<—#Set Eta_not
YA<-#Vector of Values for Class 1-Classification System A
16 XA<—#Vector of Values for Class 2-Classification System A
ZA<—#Vector of Values for Class 3—-Classification System A
18 Y<—#Vector of Values for Class I-Classification System B
X<—#Vector of Values for Class 2—Classification System B
20 Z<—#Vector of Values for Class 3—Classification System B
##Do Not Change
2 #CS A
gmul<—mean (YA)
gmu2<—mean (XA)
gmu3<—mean (ZA)
26 gsigl<—sd(YA)
gsig2<—-sd(XA)
28 gsig3<—sd(ZA)
f<—function (par){abs(pnorm(par[2],gmul, gsigl )—pnorm(par[1],gmul, gsigl))=(plxw2l)
+
30 abs(l—pnorm(par[2],gmul, gsigl))=(plxw3l)+
abs (pnorm(par[1],gmu2, gsig2) )« (p2xwl2)+
32 abs(l—pnorm(par[2],gmu2, gsig2))=(p2+xw32)+
abs (pnorm(par[1],gmu3, gsig3))=(p3xwl3)+
34 abs(pnorm(par[2],gmu3, gsig3 )—pnorm(par[1],gmu3, gsig3))*(p3xw23)}
x<—optim(start, f, lower = L, upper = U, method="L-BFGS-B”)
cl<—x$par[1]
c2<—x$par[2]
EBCA<-x$value
#Calculate all Partial Derivatives for CS A as was done for Delta CI
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#Calc Variances of Parameters
vml<—-(gsigl "2)/nl
42 vm2<—(gsig2"2)/n2
vm3<—(gsig3"2)/n3
44 #Calc var of sig using delta method
vsl<—(gsigl"2)/(2x(nl-1))
46 vs2<—(gsig2”2)/(2%(nl-1))
vs3<—(gsig3"2)/(2%(nl-1))
15 VBCA<—(dbcml1"2) svml+(dbcsl "2)xvsl+
(dbcm2”2) xvm2+(dbcs2 "2) xvs2+
(dbcm3”2) xvm3+(dbcs3 "2) xvs3
#CS B
52 gmul<—mean (Y)
gmu2<—mean (X)
54 gmu3<—mean(Z)
gsigl<—sd(Y)
gsig2<—sd(X)
gsig3<-sd(Z)
ss f<—function (par){abs(pnorm(par[2],gmul, gsigl )—pnorm(par[1],gmul, gsigl))=*(plxw2l)
+
abs(l-pnorm(par[2],gmul, gsigl))=(pl=xw3l)+
60 abs(pnorm(par[1],gmu2, gsig2))=(p2xwl2)+
abs(l—-pnorm(par[2],gmu2, gsig2))=(p2xw32)+
62 abs(pnorm(par[1],gmu3, gsig3))=(p3xwl3)+
abs (pnorm(par[2],gmu3, gsig3 )—pnorm(par[1],gmu3, gsig3))*(p3xw23)}
64 x<—optim(start , f, lower = L, upper = U, method="L-BFGS-B”)
cl<—x$par[1]
66 c2<—x$par[2]
EBC<-x$value
68 #Calculate all Partial Derivatives for CS B as was done for Delta CI
#Calc Variances of Parameters
70 vml<—(gsigl "2)/nl
vm2<—( gsig2 "2) /n2
72 vim3<—(gsig3"2)/n3
#Calc var of sig using delta method
74 vsl<—(gsigl"2)/(2x(nl—-1))
vs2<—(gsig2"2)/(2x(nl-1))
vs3<—(gsig3"2)/(2%(nl-1))
VBC<—(dbcml"2) «xvml+(dbcsl "2)svsl+
78 (dbcm2”2) xvm2+(dbcs2 "2) xvs2+
(dbecm372) xvm3+(dbcs3 "2) xvs3
VETA<-VBCA+VBC
EETA<-EBCA-EBC
> W<—(EETA-TV) /sqrt (VETA)
#Test p—value — to compare to alpha
g4 deltap<—pnorm (W, lower. tail=FALSE)
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C.1.6 Generalized Hypothesis Tests .
C.1.6.1 One-Sided Test on Single BC Value.

#Set Up

pl<—#SET Prevelance Class 1
p2<—#SET Prevelance Class 2
p3<—#SET Prevelance Class 3
5 w21<—#SET COST 2|1
w31<—#SET COST 3|1
w12<—#SET COST 1]2
w32<—#SET COST 3|2

N
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wl13<—#SET COST 1|3
w23<—#SET COST 2|3
TV<—#Set BCnot

nl<-#SIZE Class 1

3 n2<—#SIZE Class 2

n3<-#SIZE Class 3

Y<—#Vector of Values for Class 1

X<—#Vector of Values for Class 2

Z<—#Vector of Values for Class 3

K<-2500 #Change if K other than 2500 is desired
start<—-c(—-.1,0)

L<—c(-1000,-1000)

U<—c(1000,1000)

##Do Not Change

3 ybar2<—mean(Y)

ybarl<—mean (X)

5 ybar3<—mean(Z)

var2<—var (Y)
varl<—var (X)
var3<-var(Z)
tl<—rt(K,n2-1)
t2<—rt(K,nl-1)
t3<—rt(K,n3-1)
Vi<-rchisq (K,n2-1)

3 V2<—rchisq (K,nl-1)

V3<-rchisq (K,n3-1)

Rsl<—c(rep ((n2-1)=varl ,K))/V1

Rs2<—c(rep ((nl—-1)=var2 ,K))/V2

Rs3<—c(rep ((n3—-1)xvar3 ,K))/V3

Rml<—c(rep (ybarl ,K))—-(tl=«(sqrt(varl/n2)))

Rm2<—c(rep (ybar2 ,K)) —(t2«(sqrt(var2/nl)))

Rm3<-c(rep (ybar3 ,K))—(t3«(sqrt(var3/n3)))

f<—function (x) {

hun2<—function (par){abs(pnorm(par[2],x[1],x[2])—pnorm(par[1],x[1],x[2]))=*(plxw2l
)+

3 abs(l—-pnorm(par[2],x[1],x[2]))*(plxw3l)+

abs (pnorm(par[1],x[3],x[4]))*(p2xwl2)+

5 abs(l—pnorm(par[2],x[3],x[4]))*=(p2xw32)+

abs (pnorm(par[1],x[5],x[6]))*(p3xwl3)+

abs (pnorm(par[2],x[5],x[6])—pnorm(par[1],x[5],x[6]))=*(p3xw23)}
y<—optim(start , hun2, lower = L, upper = U, method="L-BFGS-B")
BC<—y$value

return (BC)

1

apl<—cbind (Rm2, sqrt (Rs2) ,Rml, sqrt (Rsl) ,Rm3, sqrt (Rs3))
RBC<—apply (apl, 1, FUN=f)

#Test p—value — to compare to alpha
genp<—length (which (RBC>TV)) /K

C.1.6.2 One-Sided Test on the Difference of Two Independent BC Values.

pl<—#SET Prevelance Class 1
p2<—#SET Prevelance Class 2
p3<—#SET Prevelance Class 3
w21<—#SET COST 2|1
w31<-#SET COST 3|1
w12<—#SET COST 1|2
w32<—#SET COST 3|2
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59

wl13<—#SET COST 1|3
w23<—#SET COST 2|3
TV<—#Set BCnot
nl<-#SIZE Class 1
n2<-#SIZE Class 2
n3<-#SIZE Class 3
TV<—#Set Eta_not

YA<—#Vector of Values for Class 1-Classification System A
XA<—#Vector of Values for Class 2—Classification System A
ZA<—#Vector of Values for Class 3—-Classification System A
Y<-#Vector of Values for Class 1-Classification System B
X<—#Vector of Values for Class 2-Classification System B
Z<—#Vector of Values for Class 3-Classification System B

K<-2500 # Change if desire K other than 2500
##Do Not Change

3 ybar2<—mean(YA)

ybarl<—mean (XA)

5 ybar3<—mean(ZA)

var2<—var (YA)

varl<-var (XA)

var3<—var (ZA)

tl<—rt(K,n2-1)

t2<—-rt(K,nl-1)

t3<—rt(K,n3-1)

Vi<—rchisq (K,n2-1)

V2<-rchisq (K,nl-1)

V3<-rchisq (K,n3-1)

Rsl<—c(rep ((n2—-1)=«varl ,K))/V1

Rs2<—c(rep ((nl—-1)xvar2 ,K))/V2

Rs3<—c(rep ((n3-1)=«var3 ,K))/V3
Rml<—c(rep(ybarl ,K))—(tl=«(sqrt(varl/n2)))
Rm2<—-c(rep (ybar2 ,K))—(t2=«(sqrt(var2/nl)))
Rm3<—c(rep (ybar3 ,K))—-(t3«(sqrt(var3/n3)))
f<—function (x) {

hun2<—function (par){abs(pnorm(par[2],x[1],x[2])—pnorm(par[1],x[1],x[2]))=(pl=xw2l

)+
abs(l—-pnorm(par[2],x[1],x[2]))*(pl=w31l)+
abs(pnorm(par[1],x[3],x[4]))=(p2xwl2)+
abs(l—-pnorm(par[2],x[3],x[4]))*(p2+w32)+
abs (pnorm(par[1],x[5],x[6]))*(p3xwl3)+

abs (pnorm(par[2],x[5],x[6])—pnorm(par[1],x[5],x[6]))=*(p3xw23)}
y<—optim(start , hun2, lower = L, upper = U, method="L-BFGS-B”)

BC<-y$value
return (BC)
}

apl<—cbind (Rm2, sqrt (Rs2) ,Rml, sqrt (Rsl) ,Rm3, sqrt (Rs3))

RbcA<—apply (apl, 1, FUN=f)
ybar2<-mean(Y)
ybarl<-mean (X)
ybar3<-mean(Z)
var2<—var (Y)

varl<—var (X)

var3<-var(Z)
tl<—rt(K,n2-1)
t2<—-rt(K,nl-1)
t3<—rt(K,n3-1)

3 Vl<—rchisq (K,n2-1)
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V2<-rchisq (K,nl-1)

V3<-rchisq (K,n3-1)

Rsl<—c(rep ((n2-1)=xvarl ,K))/V1

Rs2<—c(rep ((nl—-1)=var2 ,K))/V2

Rs3<—c(rep ((n3—-1)xvar3 ,K))/V3

Rml<—c(rep (ybarl ,K))—(tl=(sqrt(varl/n2)))

Rm2<—c(rep (ybar2 ,K)) —(t2«(sqrt(var2/nl)))

Rm3<—c(rep (ybar3 ,K))—-(t3x(sqrt(var3/n3)))

apl<—cbind (Rm2, sqrt (Rs2) ,Rml, sqrt (Rsl) ,Rm3, sqrt (Rs3))

3 Rbc<—apply (apl, 1, FUN=f)

Reta<—RbcA-Rbc

s #Test p—value — to compare to alpha

genp<—length (which (Reta<TV)) /K

C.1.7 Exact Hypothesis Tests .
C.1.7.1 One-Sided Test on Single BC Value.

#Inputs

BCO<-#set BC_not

nl<—#Sample Size Class 1

n2<—#Sample Size Class 1

n3<—#Sample Size Class 1
BChat<—#Estimated BC

pl<—#SET Prevelance Class 1

p2<—#SET Prevelance Class 2

p3<—#SET Prevelance Class 3

w21<—#SET COST 2|1

w31<-#SET COST 3|1

wl12<—#SET COST 1|2

w32<-#SET COST 3|2

wl13<-#SET COST 1]3

w23<—#SET COST 2|3

##Creat SSOR as done in Fiducial CI code
#Create Probability Space
pvec<—seq(from=0, to=1, by=.05)
len<—length (pvec)

vli<—c(rep(l,len))

coll<—kronecker (pvec,vl)
col2<—kronecker (vl ,pvec)

col3<-1-coll —col2

Ps<—cbind (coll ,col2,col3)
Pspace3<—Ps[—-which(Ps[,3]<0),]
collb<—-pvec

cl2<-1-pvec

Pspace2<—cbind (collb ,cl12)

rowp<—length (Pspace3[,1])
vl<—c(rep (1 ,rowps=rowp))

coll<—kronecker (Pspace2 ,vl)

rowb<—length (Pspace2[,1])

v2<—c(rep (1,rowp))

v3<—c(rep (1,rowb))

col2<—kronecker(v3, kronecker (Pspace3,v2))
col3<—kronecker (v3, kronecker (v2,Pspace3))
SSP4<—matrix (cbind (col2 ,coll ,col3) ,ncol=8)
end<—length (SSOR[,1])

g<—c(0,(pl*w2l) ,(plxw31) ,0,(p2xw12) ,(p2xw32) ,0,(p3xwl3) ,(p3xw23))
BC<-SSP4%:%g

BC<-round (BC,5)
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54

56

58
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20
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]

SSPtemp<—cbind (SSP4,BC)

SSPn<—-SSP4 [ which (SSPtemp[,9]>=(BC0)) ,]

BC<—-SSPn%:%g

BC<-round (BC,5)

fl<—function (p) {

factorial (nl)xfactorial (n2)xfactorial (n3)xsum(((p[1]°(SSOR[1:(UBound) ,1]))/
factorial (SSOR[1:(UBound) ,1]))*((p[2]"(SSOR[1:(UBound) ,2]))/factorial (SSOR
[1:(UBound) ,2]) )=

((p[3]1°(SSOR[1:(UBound) ,3]))/factorial (SSOR[1:(UBound) ,3]))*((p[4]"(SSOR[1:(
UBound) ,4]))/factorial (SSOR[1:(UBound) ,4]))*

((p[51°(SSOR[1:(UBound) ,5]))/factorial (SSOR[1:(UBound) ,5]1))*((p[6]"(SSOR[1:(
UBound) ,6]))/factorial (SSOR[1:(UBound) ,6]) )=

((p[71°(SSOR[1:(UBound) ,7]))/ factorial (SSOR[1:(UBound) ,7]) ) ((p[8]"(SSOR[1:(
UBound) ,8]))/factorial (SSOR[1:(UBound) ,8])))

1

BCmatch<—which (SSOR[,9]==BChat[1])

UBound<—max (BCmatch)

BCOUT1<—apply (SSPn, 1, FUN = f1)

evall<-BCOUTI1

BCOUT<-cbind (evall ,BC)

#Test p—value — to compare to alpha

p<—max (BCOUT[ which (BCOUT[,2]>=BC0) ,1])

C.1.7.2 One-Sided Test on the Difference of Two Independent BC Values, Equal

Weights Only.

#Inputs

nla<—#Sample Size Class 1 - CS A
n2a<—#Sample Size Class 2 — CS A
n3a<—#Sample Size Class 3 — CS A
nlb<—#Sample Size Class 1 — CS B
n2b<—#Sample Size Class 2 — CS B
n3b<—#Sample Size Class 3 — CS B

Etahat<—#Estimated BC

TV<—#Set Eta_not

##Do Not Change

##Create Sample Space

row=(nla+1)%2

ss=matrix (seq (from=0,to=row—1,by=1), ncol=2)
ss[,2]=nla-ss[,1]

ssl<—ss[,1:2]

row=(n2a+1)=%2

ss=matrix (seq (from=0,to=row—-1,by=1), ncol=2)
ss[,2]=n2a-ss[,1]

ss2<—ss[,1:2]

row=(n3a+1)x2

ss=matrix (seq (from=0,to=row—1,by=1), ncol=2)
ss[,2]=n3a-ss[,1]

ss3<—ss[,1:2]

LEN<—-length (ssl1[,1])=xlength(ss2[,1])x«length(ss3[,1])
lenl<—length(ss1[,1])

len2<—length (ss2[,1])

len3<—-length (ss3[,1])
vl<—c(rep(l,len2xlen3))

coll<—kronecker(ssl ,vl)

v2<—c(rep(1l,lenl))

v3<—c(rep(l,len3))

col2<—kronecker (v2, kronecker(ss2,v3))
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vd<—c(rep(l,lenlxlen2))
34 col3<—kronecker (v4, ss3)
SSl<—matrix (cbind (coll ,col2,col3) ,ncol=6)
36 row=(nlb+1)%2
ss=matrix (seq (from=0,to=row—-1,by=1), ncol=2)
38 8s[,2]=nlb-ss[,1]
ssl<—ss[,1:2]
40 row=(n2b+1)x2 ##Counting how many ways to order??
ss=matrix (seq (from=0,to=row—1,by=1), ncol=2)
42 ss[,2]=n2b—ss[,1]
ss2<—ss[,1:2]
4 row=(n3b+1)=2 ##Counting how many ways to order??
ss=matrix (seq (from=0,to=row—1,by=1), ncol=2)
ss[,2]=n3b-ss[,1]
ss3<—ss[,1:2]
48 LEN<—length (ss1[,1])=«length(ss2[,1])*xlength(ss3[,1])
lenl<—length(ssl[,1])
len2<-length (ss2[,1])
len3<—length(ss3[,1])
52 vl<—c(rep(1,len2xlen3))
coll<—kronecker(ssl ,vl)
54 v2<—c(rep(1,lenl))
v3<—c(rep(1l,len3))
col2<—kronecker (v2, kronecker(ss2,v3))
vd<—c(rep(l,lenlxlen2))
ss col3<—kronecker(v4,ss3)
SS2<—matrix (cbind (coll ,col2,col3) ,ncol=6)
60 ##Make Joint Space####
lenl<—length (SS1[,1])
62 len2<—length (SS2[,1])
LEN<-lenlxlen2
64 vl<—c(rep(1l,len2))
coll<—kronecker (SS1,vl)
66 v2<—c(rep(1l,lenl))
col2<—kronecker (v2,SS2)
68 SS<—matrix (cbind (coll ,col2) ,ncol=12)
Umat<—c(1/nla,0,1/n2a,0,1/n3a,0,-1/nl1b,0,-1/n2b,0,—-1/n3b,0)
Ul<-SS[,1:12]%+%Umat
Ul<-round (U1,5)
72 SS<—cbind (SS,Ul)
##Order Sample Space
74 temp<—data . frame (SS)
SSOR<—temp[order (temp[,13]) ,]
#Create Prob Space to Search
pvec<—seq(from=0, to=1, by=.05)
73 len<—length (pvec)
vli<—c(rep(l,lenxlen))
coll<—kronecker (pvec,vl)
v2<—c(rep(l,len))
82 col2<—kronecker (v2, kronecker(pvec,v2))
col3<—kronecker (v2, kronecker (v2,pvec))
84 ¢cl2<—c(l—-coll)
c22<—c(l-col2)
c32<—c(l-col3)
SSPla<—cbind (coll ,c12,co0l2 ,c22,co0l3,c32)
ss SSP1b<—SSPla
lenl<-length (SSPla[,1])

=

5(

W

-

8C

86
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92

94

96

98

100

102

104

106

108

len2<-length (SSP1b[,1])

LEN<-lenl=len2

vl<—c(rep(l,len2))

coll<—kronecker (SSPla,vl)

v2<—c(rep(1l,lenl))

col2<—kronecker (v2,SSPlb)

SSP4<—matrix (cbind (coll ,col2) ,ncol=12)

g<-c(1,0,1,0,1,0,-1,0,-1,0,-1,0)

BC<-SSP4%+%g

BC<-round (BC,5)

SSPtemp<-cbind (SSP4 ,BC)

SSPna<—SSP4 [ which (SSPtemp[,13]==TV) ,]

SSPn<—SSPna

BC<-SSPn%+%g

BC<-round (BC,5)

fl<—function (p){

factorial (nla)xfactorial (n2a)sxfactorial (n3a)ssum(((p[1]"(SSOR[1:(LBound-1),1]))/
factorial (SSOR[1:(LBound—1),1]))*((p[2]"(SSOR[1:(LBound-1) ,2]))/factorial(
SSOR[1:(LBound-1) ,2]) )=

((p[31°(SSOR[1:(LBound-1) ,3]))/factorial (SSOR[1:(LBound—1),3]))*((p[4]1"(SSOR[1:(
LBound-1) ,4]))/factorial (SSOR[1:(LBound-1) ,4]))=

((p[S]1"(SSOR[1:(LBound—-1),5]))/factorial (SSOR[1:(LBound—1),5]))*((p[6]"(SSOR[1:(
LBound-1) ,6]))/factorial (SSOR[1:(LBound-1) ,6])))

factorial (nlb)xfactorial (n2b)xfactorial (n3b)ssum (((p[7]1"(SSOR[1:(LBound-1) ,7]))/
factorial (SSOR[1:(LBound—-1) ,7]))«((p[8]"(SSOR[1:(LBound—1),8]))/factorial(
SSOR[1:(LBound-1) ,8]) )=

((p[91"(SSOR[1:(LBound—-1) ,9]))/factorial (SSOR[1:(LBound—-1),9]))*((p[10]"(SSOR
[1:(LBound—-1),10]))/factorial (SSOR[1:(LBound—-1) ,10]))=*

((p[11]°(SSOR[1:(LBound—1),11]))/factorial (SSOR[1:(LBound—1),11]))*((p[12]"(SSOR
[1:(LBound-1),12]))/factorial (SSOR[1:(LBound-1),12])))

}

Etamatch<—which (SSOR[,13]==Etahat[1])

LBound<—min ( Etamatch)

BCOUTl1<—apply (SSPn, 1, FUN = f1)

evall<-1-BCOUTI1

BCOUT<-cbind (evall ,BC)

#Test p—value — to compare to alpha

p<—max (BCOUT[ which (BCOUT[,2]>=TV) ,1])
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